BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3429131)

  • 1. Comparison of the interaction of methionine and norleucine-containing peptides with phospholipid bilayers.
    Epand RM; Raymer KE
    Int J Pept Protein Res; 1987 Oct; 30(4):515-21. PubMed ID: 3429131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of peptide structure in lipid-peptide interactions: a fluorescence study of the binding of pentagastrin-related pentapeptides to phospholipid vesicles.
    Surewicz WK; Epand RM
    Biochemistry; 1984 Dec; 23(25):6072-7. PubMed ID: 6525344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of peptide structure in lipid-peptide interactions: high-sensitivity differential scanning calorimetry and electron spin resonance studies of the structural properties of dimyristoylphosphatidylcholine membranes interacting with pentagastrin-related pentapeptides.
    Surewicz WK; Epand RM
    Biochemistry; 1985 Jun; 24(13):3135-44. PubMed ID: 2992577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of various peptides on the thermotropic properties of phosphatidylcholine bilayers.
    Epand RM; Sturtevant JM
    Biophys Chem; 1984 Jun; 19(4):355-62. PubMed ID: 6547624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does a methionine-to-norleucine substitution in PGLa influence peptide-membrane interactions?
    Radchenko DS; Kattge S; Kara S; Ulrich AS; Afonin S
    Biochim Biophys Acta; 2016 Sep; 1858(9):2019-2027. PubMed ID: 27267703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers.
    Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G
    Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies.
    Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN
    Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cholecystokinin-pancreozymin synthesis. Synthesis of [28-threonine,31-norleucine]- and [28-threonine,31-leucine]cholecystokinin-pancreozymin-(25-33)-nonapeptide].
    Moroder L; Wilschowitz L; Gemeiner M; Göhring W; Knof S; Scharf R; Thamm P; Gardner JD; Solomon TE; Wünsch E
    Hoppe Seylers Z Physiol Chem; 1981 Jul; 362(7):929-42. PubMed ID: 7275014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitution of norleucine for methionine residues in a crustacean pigment-dispersing hormone.
    Semmes OJ; Riehm JP; Rao KR
    Peptides; 1985; 6(3):491-4. PubMed ID: 3840888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: a simple model system for examining the protein-lipid interface.
    Jacobs RE; White SH
    Biochemistry; 1986 May; 25(9):2605-12. PubMed ID: 3718968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of end group blockage on the properties of a class A amphipathic helical peptide.
    Venkatachalapathi YV; Phillips MC; Epand RM; Epand RF; Tytler EM; Segrest JP; Anantharamaiah GM
    Proteins; 1993 Apr; 15(4):349-59. PubMed ID: 8460106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of unusual replacement of methionine by norleucine in recombinant interleukin-2 produced by E. coli.
    Lu HS; Tsai LB; Kenney WC; Lai PH
    Biochem Biophys Res Commun; 1988 Oct; 156(2):807-13. PubMed ID: 3056404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid structure determines the effects of peptides on membranes. Differential scanning calorimetry studies with pentagastrin-related peptides.
    Surewicz WK; Epand RM
    Biochim Biophys Acta; 1986 Apr; 856(2):290-300. PubMed ID: 3955044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid bilayer perturbations induced by simple hydrophobic peptides.
    Jacobs RE; White SH
    Biochemistry; 1987 Sep; 26(19):6127-34. PubMed ID: 3689766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A calorimetric study of peptide-phospholipid interactions: the glucagon-dimyristoylphosphatidylcholine complex.
    Epand RM; Sturtevant JM
    Biochemistry; 1981 Aug; 20(16):4603-6. PubMed ID: 7295636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of small peptides with lipid bilayers.
    Damodaran KV; Merz KM; Gaber BP
    Biophys J; 1995 Oct; 69(4):1299-308. PubMed ID: 8534800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes.
    Mishra VK; Palgunachari MN; Datta G; Phillips MC; Lund-Katz S; Adeyeye SO; Segrest JP; Anantharamaiah GM
    Biochemistry; 1998 Jul; 37(28):10313-24. PubMed ID: 9665740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.