These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 34291936)

  • 1. Fermi Level Equilibration at the Metal-Molecule Interface in Plasmonic Systems.
    Stefancu A; Lee S; Zhu L; Liu M; Lucacel RC; Cortés E; Leopold N
    Nano Lett; 2021 Aug; 21(15):6592-6599. PubMed ID: 34291936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface-Dependent Selectivity in Plasmon-Driven Chemical Reactions.
    Stefancu A; Gargiulo J; Laufersky G; Auguié B; Chiş V; Le Ru EC; Liu M; Leopold N; Cortés E
    ACS Nano; 2023 Feb; 17(3):3119-3127. PubMed ID: 36722817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.
    Boerigter C; Aslam U; Linic S
    ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C
    Shibuta M; Yamamoto K; Ohta T; Inoue T; Mizoguchi K; Nakaya M; Eguchi T; Nakajima A
    ACS Nano; 2021 Jan; 15(1):1199-1209. PubMed ID: 33411503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct hot-carrier transfer in plasmonic catalysis.
    Kumar PV; Rossi TP; Kuisma M; Erhart P; Norris DJ
    Faraday Discuss; 2019 May; 214():189-197. PubMed ID: 30855061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct and Broadband Plasmonic Charge Transfer to Enhance Water Oxidation on a Gold Electrode.
    Graf M; Vonbun-Feldbauer GB; Koper MTM
    ACS Nano; 2021 Feb; 15(2):3188-3200. PubMed ID: 33496564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 5. Halide ion (F-, Cl-, Br-, I-) adsorption.
    Shimizu K; Shchukarev A; Kozin PA; Boily JF
    Langmuir; 2013 Feb; 29(8):2623-30. PubMed ID: 23347248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration.
    Subramanian V; Wolf EE; Kamat PV
    J Am Chem Soc; 2004 Apr; 126(15):4943-50. PubMed ID: 15080700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.
    Guerrero A; Marchesi LF; Boix PP; Ruiz-Raga S; Ripolles-Sanchis T; Garcia-Belmonte G; Bisquert J
    ACS Nano; 2012 Apr; 6(4):3453-60. PubMed ID: 22463072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge distribution and Fermi level in bimetallic nanoparticles.
    Holmberg N; Laasonen K; Peljo P
    Phys Chem Chem Phys; 2016 Jan; 18(4):2924-31. PubMed ID: 26788999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot-Carrier Transfer across a Nanoparticle-Molecule Junction: The Importance of Orbital Hybridization and Level Alignment.
    Fojt J; Rossi TP; Kuisma M; Erhart P
    Nano Lett; 2022 Nov; 22(21):8786-8792. PubMed ID: 36200744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Holes Assist Plasmonic Nanoelectrode Dissolution.
    Al-Zubeidi A; Hoener BS; Collins SSE; Wang W; Kirchner SR; Hosseini Jebeli SA; Joplin A; Chang WS; Link S; Landes CF
    Nano Lett; 2019 Feb; 19(2):1301-1306. PubMed ID: 30616352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Bacterial Cellulose Nanofibrillation for the Development of a Plasmonic Paper Sensor.
    Purwidyantri A; Karina M; Hsu CH; Srikandace Y; Prabowo BA; Lai CS
    ACS Biomater Sci Eng; 2020 May; 6(5):3122-3131. PubMed ID: 33463286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement.
    Leopold N; Stefancu A; Herman K; Tódor IS; Iancu SD; Moisoiu V; Leopold LF
    Beilstein J Nanotechnol; 2018; 9():2236-2247. PubMed ID: 30202692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing silver nanoparticles during catalytic H2 evolution.
    Merga G; Cass LC; Chipman DM; Meisel D
    J Am Chem Soc; 2008 Jun; 130(22):7067-76. PubMed ID: 18461934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle on semiconductor quantum dot: Do surface ligands influence Fermi level equilibration.
    Sandeep K; Manoj B; Thomas KG
    J Chem Phys; 2020 Jan; 152(4):044710. PubMed ID: 32007054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible and Superhydrophobic Silver Nanoparticles Decorated Aligned Silver Nanowires Films as Surface-Enhanced Raman Scattering Substrates.
    Wang J; Yi G
    Nanoscale Res Lett; 2019 Aug; 14(1):292. PubMed ID: 31440839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.