These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34292283)

  • 21. Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi
    Chen X; Hou W; Zhai F; Cheng J; Yuan S; Li Y; Wang N; Zhang L; Ren J
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Density functional theory analysis of selective adsorption of AsH
    Li Y; Sun X; Zhou L; Ning P; Tang L
    J Mol Model; 2019 May; 25(5):145. PubMed ID: 31055650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic simulation of adsorption of SO
    Karami Z; Hamed Mashhadzadeh A; Habibzadeh S; Ganjali MR; Ghardi EM; Hasnaoui A; Vatanpour V; Sharma G; Esmaeili A; Stadler FJ; Saeb MR
    J Mol Model; 2021 Feb; 27(3):70. PubMed ID: 33543346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling H2 chemisorption and physisorption on metal decorated graphene using quantum Monte Carlo.
    Al-Hamdani YS; Zen A; Alfè D
    J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38018756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.
    Tan X; Tahini HA; Smith SC
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32815-32822. PubMed ID: 27934167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials.
    Cruz-Martínez H; García-Hilerio B; Montejo-Alvaro F; Gazga-Villalobos A; Rojas-Chávez H; Sánchez-Rodríguez EP
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen storage in bimetallic Ti-Al sub-nanoclusters supported on graphene.
    Ramos-Castillo CM; Reveles JU; Cifuentes-Quintal ME; Zope RR; de Coss R
    Phys Chem Chem Phys; 2017 Aug; 19(31):21174-21184. PubMed ID: 28752877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal (Li, Al, Ca and Ti) absorbed graphene with defects for hydrogen storage: first-principles calculations.
    Park HL; Chung YC
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10624-8. PubMed ID: 22408961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical Study of Hydrogen Storage on Ti-Decorated BC₃ Nanostructures.
    Wang J; Ma L
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5650-5655. PubMed ID: 30961720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density Functional Theory Study of Hydrogen Adsorption in a Ti-Decorated Mg-Based Metal-Organic Framework-74.
    Suksaengrat P; Amornkitbamrung V; Srepusharawoot P; Ahuja R
    Chemphyschem; 2016 Mar; 17(6):879-84. PubMed ID: 26717417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimentally validated design principles of heteroatom-doped-graphene-supported calcium single-atom materials for non-dissociative chemisorption solid-state hydrogen storage.
    Gao Y; Li Z; Wang P; Cui WG; Wang X; Yang Y; Gao F; Zhang M; Gan J; Li C; Liu Y; Wang X; Qi F; Zhang J; Han X; Du W; Chen J; Xia Z; Pan H
    Nat Commun; 2024 Jan; 15(1):928. PubMed ID: 38296957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study on hydrogen storage performance of Ti decorated vacancies graphene structure on the first principle.
    Cui H; Zhang Y; Tian W; Wang Y; Liu T; Chen Y; Shan P; Yuan H
    RSC Adv; 2021 Apr; 11(23):13912-13918. PubMed ID: 35423956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Adsorption of H
    Liao Y; Peng R; Peng S; Zeng W; Zhou Q
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium-decorated carbyne networks as hydrogen storage media.
    Sorokin PB; Lee H; Antipina LY; Singh AK; Yakobson BI
    Nano Lett; 2011 Jul; 11(7):2660-5. PubMed ID: 21648444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Investigation of a Reversible Energy Storage Medium in g-B
    Chen X; Zhang L; Jia H; Gao P
    Langmuir; 2024 Jun; 40(22):11582-11589. PubMed ID: 38785077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into Adsorption of C₂H₂ and H₂ on Doped Graphene with Nonmetallic Atom (N, P, S): A Density Functional Theory Study.
    Huang L; Chu W; Zhou X; Zhou Y; Xue Y
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1288-1295. PubMed ID: 31383130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen Chemisorption on Singly Vanadium-Doped Aluminum Clusters.
    Vanbuel J; Fernández EM; Ferrari P; Gewinner S; Schöllkopf W; Balbás LC; Fielicke A; Janssens E
    Chemistry; 2017 Nov; 23(62):15638-15643. PubMed ID: 28940577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversible Hydrogen Storage in Metal-Decorated Honeycomb Borophene Oxide.
    Habibi P; Vlugt TJH; Dey P; Moultos OA
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43233-43240. PubMed ID: 34459595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene.
    Parambhath VB; Nagar R; Ramaprabhu S
    Langmuir; 2012 May; 28(20):7826-33. PubMed ID: 22548388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.