BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 34292399)

  • 1. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy.
    Zimmer TS; David B; Broekaart DWM; Schidlowski M; Ruffolo G; Korotkov A; van der Wel NN; van Rijen PC; Mühlebner A; van Hecke W; Baayen JC; Idema S; François L; van Eyll J; Dedeurwaerdere S; Kessels HW; Surges R; Rüber T; Gorter JA; Mills JD; van Vliet EA; Aronica E
    Acta Neuropathol; 2021 Oct; 142(4):729-759. PubMed ID: 34292399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy.
    Henning L; Antony H; Breuer A; Müller J; Seifert G; Audinat E; Singh P; Brosseron F; Heneka MT; Steinhäuser C; Bedner P
    Glia; 2023 Feb; 71(2):168-186. PubMed ID: 36373840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Cholecystokinin-Expressing Interneuron Input Contributes to Disinhibition of the Hippocampal CA2 Region in a Mouse Model of Temporal Lobe Epilepsy.
    Whitebirch AC; Santoro B; Barnett A; Lisgaras CP; Scharfman HE; Siegelbaum SA
    J Neurosci; 2023 Oct; 43(41):6930-6949. PubMed ID: 37643861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential anti-epileptogenic strategies for temporal lobe epilepsy.
    Drion CM; van Scheppingen J; Arena A; Geijtenbeek KW; Kooijman L; van Vliet EA; Aronica E; Gorter JA
    J Neuroinflammation; 2018 Jul; 15(1):212. PubMed ID: 30037344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular neuropathology of temporal lobe epilepsy: complementary approaches in animal models and human disease tissue.
    Majores M; Schoch S; Lie A; Becker AJ
    Epilepsia; 2007; 48 Suppl 2():4-12. PubMed ID: 17571348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway.
    Broekaart DWM; van Scheppingen J; Geijtenbeek KW; Zuidberg MRJ; Anink JJ; Baayen JC; Mühlebner A; Aronica E; Gorter JA; van Vliet EA
    Epilepsia; 2017 Aug; 58(8):1462-1472. PubMed ID: 28643873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic profile differentiating between mesial temporal lobe epilepsy with and without hippocampal sclerosis.
    Furukawa A; Kakita A; Chiba Y; Kitaura H; Fujii Y; Fukuda M; Kameyama S; Shimada A
    Epilepsy Res; 2020 Dec; 168():106502. PubMed ID: 33197783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression.
    Broekaart DWM; Anink JJ; Baayen JC; Idema S; de Vries HE; Aronica E; Gorter JA; van Vliet EA
    Epilepsia; 2018 Oct; 59(10):1931-1944. PubMed ID: 30194729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased expression of Rev-Erbα in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbα have anti-inflammatory and neuroprotective effects in the pilocarpine model.
    Yue J; He J; Wei Y; Shen K; Wu K; Yang X; Liu S; Zhang C; Yang H
    J Neuroinflammation; 2020 Jan; 17(1):43. PubMed ID: 32005256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus.
    Hu K; Xie YY; Zhang C; Ouyang DS; Long HY; Sun DN; Long LL; Feng L; Li Y; Xiao B
    BMC Neurosci; 2012 Sep; 13():115. PubMed ID: 22998082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental neonatal status epilepticus and the development of temporal lobe epilepsy with unilateral hippocampal sclerosis.
    Dunleavy M; Shinoda S; Schindler C; Ewart C; Dolan R; Gobbo OL; Kerskens CM; Henshall DC
    Am J Pathol; 2010 Jan; 176(1):330-42. PubMed ID: 19948825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.
    Pearson JN; Rowley S; Liang LP; White AM; Day BJ; Patel M
    Neurobiol Dis; 2015 Oct; 82():289-297. PubMed ID: 26184893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy.
    Li TR; Jia YJ; Wang Q; Shao XQ; Zhang P; Lv RJ
    Brain Res; 2018 Dec; 1700():56-65. PubMed ID: 30006293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy.
    Pauletti A; Terrone G; Shekh-Ahmad T; Salamone A; Ravizza T; Rizzi M; Pastore A; Pascente R; Liang LP; Villa BR; Balosso S; Abramov AY; van Vliet EA; Del Giudice E; Aronica E; Patel M; Walker MC; Vezzani A
    Brain; 2019 Jul; 142(7):e39. PubMed ID: 31145451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NLRP3 inflammasome and endoplasmic reticulum stress in the epileptogenic zone in temporal lobe epilepsy: molecular insights into their interdependence.
    Yue J; Wei YJ; Yang XL; Liu SY; Yang H; Zhang CQ
    Neuropathol Appl Neurobiol; 2020 Dec; 46(7):770-785. PubMed ID: 32311777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy.
    Zhu X; Zhang A; Dong J; Yao Y; Zhu M; Xu K; Al Hamda MH
    Brain Res Bull; 2019 Oct; 152():175-183. PubMed ID: 31336125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy.
    Sha LZ; Xing XL; Zhang D; Yao Y; Dou WC; Jin LR; Wu LW; Xu Q
    PLoS One; 2012; 7(6):e39152. PubMed ID: 22761730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy.
    Aronica E; Zurolo E; Iyer A; de Groot M; Anink J; Carbonell C; van Vliet EA; Baayen JC; Boison D; Gorter JA
    Epilepsia; 2011 Sep; 52(9):1645-55. PubMed ID: 21635241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes.
    Korotkov A; Broekaart DWM; van Scheppingen J; Anink JJ; Baayen JC; Idema S; Gorter JA; Aronica E; van Vliet EA
    J Neuroinflammation; 2018 Jul; 15(1):211. PubMed ID: 30031401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy.
    Aronica E; van Vliet EA; Mayboroda OA; Troost D; da Silva FH; Gorter JA
    Eur J Neurosci; 2000 Jul; 12(7):2333-44. PubMed ID: 10947812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.