These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34292407)

  • 1. Assessment of regional water demand for coal-based power plants in India: exploring its regional impact on other cross-sectoral water stress.
    Singh DK; Tayal S
    Environ Monit Assess; 2021 Jul; 193(8):503. PubMed ID: 34292407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental impact of coal industry and thermal power plants in India.
    Mishra UC
    J Environ Radioact; 2004; 72(1-2):35-40. PubMed ID: 15162853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact assessment of climate policy on Poland's power sector.
    Skoczkowski T; Bielecki S; Węglarz A; Włodarczak M; Gutowski P
    Mitig Adapt Strateg Glob Chang; 2018; 23(8):1303-1349. PubMed ID: 30464705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.
    Lu Z; Streets DG; de Foy B; Krotkov NA
    Environ Sci Technol; 2013 Dec; 47(24):13993-4000. PubMed ID: 24274462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viability of power distribution in India - Challenges and Way Forward.
    Das SD; Srikanth R
    Energy Policy; 2020 Dec; 147():111882. PubMed ID: 33100473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric Power Generation and Water Stress in India: A Spatial and Temporal Analysis.
    Zhang C; Yang J; Urpelainen J; Chitkara P; Zhang J; Wang J
    Environ Sci Technol; 2021 Apr; 55(8):4314-4323. PubMed ID: 33725438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing Water Stress by the Thermal Power Industry in China Based on a High Spatial Resolution Water Withdrawal and Consumption Inventory.
    Zhang C; Zhong L; Fu X; Wang J; Wu Z
    Environ Sci Technol; 2016 Feb; 50(4):1642-52. PubMed ID: 26789286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy, water and fish: biodiversity impacts of energy-sector water demand in the United States depend on efficiency and policy measures.
    McDonald RI; Olden JD; Opperman JJ; Miller WM; Fargione J; Revenga C; Higgins JV; Powell J
    PLoS One; 2012; 7(11):e50219. PubMed ID: 23185581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Managing Scarce Water Resources in China's Coal Power Industry.
    Zhang C; Zhong L; Fu X; Zhao Z
    Environ Manage; 2016 Jun; 57(6):1188-203. PubMed ID: 26908125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass pellets for power generation in India: a techno-economic evaluation.
    Purohit P; Chaturvedi V
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29614-29632. PubMed ID: 30141169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-carbon trade-off in China's coal power industry.
    Zhang C; Anadon LD; Mo H; Zhao Z; Liu Z
    Environ Sci Technol; 2014 Oct; 48(19):11082-9. PubMed ID: 25215622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.
    Russell MC; Belle JH; Liu Y
    J Air Waste Manag Assoc; 2017 Jan; 67(1):3-16. PubMed ID: 27027572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective.
    Wang C; Zhang L; Zhou P; Chang Y; Zhou D; Pang M; Yin H
    J Environ Manage; 2019 Sep; 246():758-767. PubMed ID: 31228689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mortality impacts of current and planned coal-fired power plants in India.
    Cropper M; Cui R; Guttikunda S; Hultman N; Jawahar P; Park Y; Yao X; Song XP
    Proc Natl Acad Sci U S A; 2021 Feb; 118(5):. PubMed ID: 33495332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury in Indian Thermal Coals.
    Das TB; Senapati RN; Agarwalla H
    Bull Environ Contam Toxicol; 2020 Sep; 105(3):502-512. PubMed ID: 32728825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review.
    Mukherjee AB; Zevenhoven R
    Sci Total Environ; 2006 Sep; 368(1):384-92. PubMed ID: 16183102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India.
    Bhardwaj S; Soni R; Gupta SK; Shukla DP
    Environ Monit Assess; 2020 Mar; 192(4):251. PubMed ID: 32215781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data.
    Singh RP; Kumar S; Singh AK
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30400662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.
    Mittal ML; Sharma C; Singh R
    Environ Monit Assess; 2014 Oct; 186(10):6857-66. PubMed ID: 25004854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of renewables for rapid transitioning of the power sector across states in India.
    Gulagi A; Ram M; Bogdanov D; Sarin S; Mensah TNO; Breyer C
    Nat Commun; 2022 Sep; 13(1):5499. PubMed ID: 36130937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.