These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34292699)

  • 1. Reconfigurable Chirality of DNA-Bridged Nanorod Dimers.
    Lee BH; Kotov NA; Arya G
    ACS Nano; 2021 Aug; 15(8):13547-13558. PubMed ID: 34292699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Gold Nanorods with Five-Fold Rotational Symmetry and Orientation-Dependent Chiroptical Properties of Their Monomers and Dimers.
    Zhang L; Chen Y; Zheng J; Lewis GR; Xia X; Ringe E; Zhang W; Wang J
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202312615. PubMed ID: 37945530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic response of DNA-assembled gold nanorods: effect of DNA linker length, temperature and linker/nanoparticles ratio.
    Vial S; Nykypanchuk D; Deepak FL; Prado M; Gang O
    J Colloid Interface Sci; 2014 Nov; 433():34-42. PubMed ID: 25112910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral plasmonics of self-assembled nanorod dimers.
    Ma W; Kuang H; Wang L; Xu L; Chang WS; Zhang H; Sun M; Zhu Y; Zhao Y; Liu L; Xu C; Link S; Kotov NA
    Sci Rep; 2013; 3():1934. PubMed ID: 23752317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic polymers with strong chiroptical response for sensing molecular chirality.
    Zhai D; Wang P; Wang RY; Tian X; Ji Y; Zhao W; Wang L; Wei H; Wu X; Zhang X
    Nanoscale; 2015 Jun; 7(24):10690-8. PubMed ID: 26030276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Supra-Assembly of a DNA Surface Adapter for Tunable Chiral Directional Self-Assembly of Gold Nanorods.
    Lan X; Su Z; Zhou Y; Meyer T; Ke Y; Wang Q; Chiu W; Liu N; Zou S; Yan H; Liu Y
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14632-14636. PubMed ID: 28971555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable optical activity of gold nanorod and chiral quantum dot assemblies.
    Zhu Z; Guo J; Liu W; Li Z; Han B; Zhang W; Tang Z
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13571-5. PubMed ID: 24346941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of the Plasmonic Chirality of Gold Nanorod Trimers Templated by DNA Origami.
    Chen Z; Choi CKK; Wang Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26835-26840. PubMed ID: 30073831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attomolar DNA detection with chiral nanorod assemblies.
    Ma W; Kuang H; Xu L; Ding L; Xu C; Wang L; Kotov NA
    Nat Commun; 2013; 4():2689. PubMed ID: 24162144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral Plasmonic Nanochains via the Self-Assembly of Gold Nanorods and Helical Glutathione Oligomers Facilitated by Cetyltrimethylammonium Bromide Micelles.
    Lu J; Chang YX; Zhang NN; Wei Y; Li AJ; Tai J; Xue Y; Wang ZY; Yang Y; Zhao L; Lu ZY; Liu K
    ACS Nano; 2017 Apr; 11(4):3463-3475. PubMed ID: 28332821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.
    Jiang Q; Liu Q; Shi Y; Wang ZG; Zhan P; Liu J; Liu C; Wang H; Shi X; Zhang L; Sun J; Ding B; Liu M
    Nano Lett; 2017 Nov; 17(11):7125-7130. PubMed ID: 28990389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes.
    Zhang Q; Hernandez T; Smith KW; Hosseini Jebeli SA; Dai AX; Warning L; Baiyasi R; McCarthy LA; Guo H; Chen DH; Dionne JA; Landes CF; Link S
    Science; 2019 Sep; 365(6460):1475-1478. PubMed ID: 31604278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Shrinkage of DNA-Functionalized Gold Nanoparticle Assemblies Revealed by Surface Plasmon Resonance.
    Wang G; Yu L; Akiyama Y; Takarada T; Maeda M
    Biotechnol J; 2018 Dec; 13(12):e1800090. PubMed ID: 30052321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles.
    Cheng Q; Yang J; Sun L; Liu C; Yang G; Tao Y; Sun X; Zhang B; Xu H; Zhang Q
    Nano Lett; 2023 Dec; 23(23):11376-11384. PubMed ID: 38038244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing.
    Abadeer NS; Fülöp G; Chen S; Käll M; Murphy CJ
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24915-25. PubMed ID: 26488238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of Gold Nanorods into Chiral Plasmonic Metamolecules Using DNA Origami Templates.
    Huang Y; Nguyen MK; Kuzyk A
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30907870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic study of antibonding modes in gold nanorod dimers and trimers.
    Osberg KD; Harris N; Ozel T; Ku JC; Schatz GC; Mirkin CA
    Nano Lett; 2014 Dec; 14(12):6949-54. PubMed ID: 25411044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.