These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34293026)

  • 21. MicroRNA miR-927 targets the juvenile hormone primary response gene Krüppel homolog1 to control Drosophila developmental growth.
    He Q; Zhang Y; Dong W
    Insect Mol Biol; 2020 Dec; 29(6):545-554. PubMed ID: 32715555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect.
    Ishimaru Y; Tomonari S; Watanabe T; Noji S; Mito T
    Philos Trans R Soc Lond B Biol Sci; 2019 Oct; 374(1783):20190225. PubMed ID: 31438810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription factor broad suppresses precocious development of adult structures during larval-pupal metamorphosis in the red flour beetle, Tribolium castaneum.
    Parthasarathy R; Tan A; Bai H; Palli SR
    Mech Dev; 2008; 125(3-4):299-313. PubMed ID: 18083350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Roles of E93 and Kr-h1 in Metamorphosis of
    Li KL; Yuan SY; Nanda S; Wang WX; Lai FX; Fu Q; Wan PJ
    Front Physiol; 2018; 9():1677. PubMed ID: 30524315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster.
    Minakuchi C; Zhou X; Riddiford LM
    Mech Dev; 2008; 125(1-2):91-105. PubMed ID: 18036785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential expression of the adult specifier E93 in the strepsipteran Xenos vesparum Rossi suggests a role in female neoteny.
    Chafino S; López-Escardó D; Benelli G; Kovac H; Casacuberta E; Franch-Marro X; Kathirithamby J; Martín D
    Sci Rep; 2018 Sep; 8(1):14176. PubMed ID: 30242215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional Analysis of a Juvenile Hormone Inducible Transcription Factor, Krüppel homolog 1, in the Bean Bug,
    Dong L; Muramatsu N; Numata H; Ito C
    Zoolog Sci; 2022 Dec; 39(6):562-569. PubMed ID: 36495491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic action of the transcription factors Krüppel homolog 1 and Hairy in juvenile hormone/Methoprene-tolerant-mediated gene-repression in the mosquito Aedes aegypti.
    Saha TT; Roy S; Pei G; Dou W; Zou Z; Raikhel AS
    PLoS Genet; 2019 Oct; 15(10):e1008443. PubMed ID: 31661489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose.
    Smykal V; Daimon T; Kayukawa T; Takaki K; Shinoda T; Jindra M
    Dev Biol; 2014 Jun; 390(2):221-30. PubMed ID: 24662045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. E93 expression and links to the juvenile hormone in hemipteran mealybugs with insights on female neoteny.
    Vea IM; Tanaka S; Tsuji T; Shiotsuki T; Jouraku A; Minakuchi C
    Insect Biochem Mol Biol; 2019 Jan; 104():65-72. PubMed ID: 30503224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and characterization of Methoprene-tolerant (Met) and Krüppel homolog 1 (Kr-h1) genes in the wheat blossom midge, Sitodiplosis mosellana.
    Cheng WN; Li XJ; Zhao JJ; Zhu-Salzman K
    Insect Sci; 2020 Apr; 27(2):292-303. PubMed ID: 30156035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting the role of Krüppel homolog 1 in the metamorphosis and female reproduction of the cotton bollworm, Helicoverpa armigera.
    Zhang WN; Ma L; Liu C; Chen L; Xiao HJ; Liang GM
    Insect Mol Biol; 2018 Aug; 27(4):492-504. PubMed ID: 29719076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA interference tools for the western flower thrips, Frankliniella occidentalis.
    Badillo-Vargas IE; Rotenberg D; Schneweis BA; Whitfield AE
    J Insect Physiol; 2015 May; 76():36-46. PubMed ID: 25796097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect.
    Okude G; Moriyama M; Kawahara-Miki R; Yajima S; Fukatsu T; Futahashi R
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35217609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9 Genome Editing Uncovers the Mode of Action of Methoprene in the Yellow Fever Mosquito,
    Zhu GH; Gaddelapati SC; Jiao Y; Koo J; Palli SR
    CRISPR J; 2022 Dec; 5(6):813-824. PubMed ID: 36374965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Knockdown of
    Wu JJ; Chen F; Yang R; Shen CH; Ze LJ; Jin L; Li GQ
    Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36358341
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    He Q; Zhang Y
    Front Physiol; 2022; 13():905441. PubMed ID: 35574485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene
    Song J; Li W; Zhao H; Gao L; Fan Y; Zhou S
    Development; 2018 Dec; 145(24):. PubMed ID: 30470705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter.
    He Q; Fan X; Wang S; Chen S; Chen J
    Insect Mol Biol; 2024 Apr; 33(2):124-135. PubMed ID: 37916965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broad specifies pupal development and mediates the 'status quo' action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca.
    Zhou X; Riddiford LM
    Development; 2002 May; 129(9):2259-69. PubMed ID: 11959833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.