These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
571 related articles for article (PubMed ID: 34293218)
41. Grazing Intensity Rather than Host Plant's Palatability Shapes the Community of Arbuscular Mycorrhizal Fungi in a Steppe Grassland. Faghihinia M; Zou Y; Bai Y; Dudáš M; Marrs R; Staddon PL Microb Ecol; 2022 Nov; 84(4):1062-1071. PubMed ID: 34755197 [TBL] [Abstract][Full Text] [Related]
43. Lithology and niche habitat have significant effect on arbuscular mycorrhizal fungal abundance and their interspecific interactions. Xiao D; Tang Y; Zhang W; Hu P; Wang K Sci Total Environ; 2024 Apr; 919():170774. PubMed ID: 38340853 [TBL] [Abstract][Full Text] [Related]
44. Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. Xu X; Qiu Y; Zhang K; Yang F; Chen M; Luo X; Yan X; Wang P; Zhang Y; Chen H; Guo H; Jiang L; Hu S Glob Chang Biol; 2022 Feb; 28(3):1147-1161. PubMed ID: 34668627 [TBL] [Abstract][Full Text] [Related]
45. Trait-based assembly of arbuscular mycorrhizal fungal communities determines soil carbon formation and retention. Horsch CCA; Antunes PM; Fahey C; Grandy AS; Kallenbach CM New Phytol; 2023 Jul; 239(1):311-324. PubMed ID: 36978279 [TBL] [Abstract][Full Text] [Related]
46. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Camenzind T; Hempel S; Homeier J; Horn S; Velescu A; Wilcke W; Rillig MC Glob Chang Biol; 2014 Dec; 20(12):3646-59. PubMed ID: 24764217 [TBL] [Abstract][Full Text] [Related]
47. Improving phosphorus sustainability in intensively managed grasslands: The potential role of arbuscular mycorrhizal fungi. Fornara DA; Flynn D; Caruso T Sci Total Environ; 2020 Mar; 706():135744. PubMed ID: 31940732 [TBL] [Abstract][Full Text] [Related]
48. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis. Qiu Q; Bender SF; Mgelwa AS; Hu Y Sci Total Environ; 2022 Feb; 807(Pt 1):150857. PubMed ID: 34626638 [TBL] [Abstract][Full Text] [Related]
49. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752 [TBL] [Abstract][Full Text] [Related]
50. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. Ingraffia R; Amato G; Frenda AS; Giambalvo D PLoS One; 2019; 14(3):e0213672. PubMed ID: 30856237 [TBL] [Abstract][Full Text] [Related]
51. Interaction Between Root Exudates of the Poisonous Plant Zhu X; Li X; Xing F; Chen C; Huang G; Gao Y Microorganisms; 2020 Mar; 8(3):. PubMed ID: 32143469 [TBL] [Abstract][Full Text] [Related]
52. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). Zhang X; Wang L; Ma F; Yang J; Su M J Sci Food Agric; 2017 Jul; 97(9):2919-2925. PubMed ID: 27935053 [TBL] [Abstract][Full Text] [Related]
53. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Wang C; White PJ; Li C Mycorrhiza; 2017 May; 27(4):369-381. PubMed ID: 28039601 [TBL] [Abstract][Full Text] [Related]
54. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. de Melo RW; Schneider J; de Souza CE; Sousa SC; Guimarães GL; de Souza MF Int J Phytoremediation; 2014; 16(7-12):840-58. PubMed ID: 24933888 [TBL] [Abstract][Full Text] [Related]
55. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Chandrasekaran M; Boughattas S; Hu S; Oh SH; Sa T Mycorrhiza; 2014 Nov; 24(8):611-25. PubMed ID: 24770494 [TBL] [Abstract][Full Text] [Related]
56. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. Leigh J; Fitter AH; Hodge A FEMS Microbiol Ecol; 2011 Jun; 76(3):428-38. PubMed ID: 21303398 [TBL] [Abstract][Full Text] [Related]
57. Ungulate and topographic control of arbuscular mycorrhizal fungal spore community composition in a temperate grassland. Murray TR; Frank DA; Gehring CA Ecology; 2010 Mar; 91(3):815-27. PubMed ID: 20426339 [TBL] [Abstract][Full Text] [Related]
58. Plant growth and arbuscular mycorrhizae development in oil sands processing by-products. Boldt-Burisch K; Naeth MA; Schneider U; Schneider B; Hüttl RF Sci Total Environ; 2018 Apr; 621():30-39. PubMed ID: 29175619 [TBL] [Abstract][Full Text] [Related]
59. [Various effects on the Abundance and Composition of Arbuscular Mycorrhizal Fungal Communities in Soils in Karst Shrub Ecosystems]. Liang YM; Su YR; He XY; Chen XB; Hu YJ Huan Jing Ke Xue; 2017 Nov; 38(11):4828-4835. PubMed ID: 29965429 [TBL] [Abstract][Full Text] [Related]
60. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. Zhang L; Xu M; Liu Y; Zhang F; Hodge A; Feng G New Phytol; 2016 May; 210(3):1022-32. PubMed ID: 27074400 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]