These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 34293296)

  • 1. Spontaneous activity in developing thalamic and cortical sensory networks.
    Martini FJ; Guillamón-Vivancos T; Moreno-Juan V; Valdeolmillos M; López-Bendito G
    Neuron; 2021 Aug; 109(16):2519-2534. PubMed ID: 34293296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice.
    Antón-Bolaños N; Sempere-Ferràndez A; Guillamón-Vivancos T; Martini FJ; Pérez-Saiz L; Gezelius H; Filipchuk A; Valdeolmillos M; López-Bendito G
    Science; 2019 Jun; 364(6444):987-990. PubMed ID: 31048552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is there a thalamic component to experience-dependent cortical plasticity?
    Fox K; Wallace H; Glazewski S
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1709-15. PubMed ID: 12626005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the Thalamocortical Interactions: Past, Present and Future.
    López-Bendito G
    Neuroscience; 2018 Aug; 385():67-74. PubMed ID: 29932982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems.
    Budinger E; Heil P; Hess A; Scheich H
    Neuroscience; 2006 Dec; 143(4):1065-83. PubMed ID: 17027173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular diversity of the somatosensory cortical map plasticity.
    Kole K; Scheenen W; Tiesinga P; Celikel T
    Neurosci Biobehav Rev; 2018 Jan; 84():100-115. PubMed ID: 29183683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early γ oscillations synchronize developing thalamus and cortex.
    Minlebaev M; Colonnese M; Tsintsadze T; Sirota A; Khazipov R
    Science; 2011 Oct; 334(6053):226-9. PubMed ID: 21998388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.
    Shoykhet M; Middleton JW
    Front Neural Circuits; 2016; 10():68. PubMed ID: 27610077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of experience-dependent plasticity in the visual and somatosensory systems.
    Fox K; Wong RO
    Neuron; 2005 Nov; 48(3):465-77. PubMed ID: 16269363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilaterally propagating waves of spontaneous activity arising from discrete pacemakers in the neonatal mouse cerebral cortex.
    Lischalk JW; Easton CR; Moody WJ
    Dev Neurobiol; 2009 Jun; 69(7):407-14. PubMed ID: 19263415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory enrichment after peripheral nerve injury restores cortical, not thalamic, receptive field organization.
    Florence SL; Boydston LA; Hackett TA; Lachoff HT; Strata F; Niblock MM
    Eur J Neurosci; 2001 May; 13(9):1755-66. PubMed ID: 11359527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenatal thalamic waves regulate cortical area size prior to sensory processing.
    Moreno-Juan V; Filipchuk A; Antón-Bolaños N; Mezzera C; Gezelius H; Andrés B; Rodríguez-Malmierca L; Susín R; Schaad O; Iwasato T; Schüle R; Rutlin M; Nelson S; Ducret S; Valdeolmillos M; Rijli FM; López-Bendito G
    Nat Commun; 2017 Feb; 8():14172. PubMed ID: 28155854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices.
    Ferrer C; De Marco García NV
    Front Neural Circuits; 2022; 16():866999. PubMed ID: 35463203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex.
    Jones EG
    Annu Rev Neurosci; 2000; 23():1-37. PubMed ID: 10845057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity.
    McVea DA; Murphy TH; Mohajerani MH
    Front Neural Circuits; 2016; 10():103. PubMed ID: 28066190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical activity patterns and the functional maturation of the neocortex.
    Kilb W; Kirischuk S; Luhmann HJ
    Eur J Neurosci; 2011 Nov; 34(10):1677-86. PubMed ID: 22103424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental Phase Transitions in Spatial Organization of Spontaneous Activity in Postnatal Barrel Cortex Layer 4.
    Nakazawa S; Yoshimura Y; Takagi M; Mizuno H; Iwasato T
    J Neurosci; 2020 Sep; 40(40):7637-7650. PubMed ID: 32887743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An increase in dendritic plateau potentials is associated with experience-dependent cortical map reorganization.
    Pagès S; Chenouard N; Chéreau R; Kouskoff V; Gambino F; Holtmaat A
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrently induced plasticity due to convergence of distinct forms of spike timing-dependent plasticity in the developing barrel cortex.
    Itami C; Kimura F
    Eur J Neurosci; 2016 Dec; 44(12):2984-2990. PubMed ID: 27726220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early patterns of activity in the developing cortex: Focus on the sensorimotor system.
    Khazipov R; Milh M
    Semin Cell Dev Biol; 2018 Apr; 76():120-129. PubMed ID: 28899717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.