BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34293303)

  • 1. DNA sequence-dependent positioning of the linker histone in a nucleosome: A single-pair FRET study.
    De M; Öztürk MA; Isbaner S; Tóth K; Wade RC
    Biophys J; 2021 Sep; 120(17):3747-3763. PubMed ID: 34293303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.
    Zhou BR; Feng H; Ghirlando R; Li S; Schwieters CD; Bai Y
    J Mol Biol; 2016 Oct; 428(20):3948-3959. PubMed ID: 27558112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric linker histone association directs the asymmetric rearrangement of core histone interactions in a positioned nucleosome containing a thyroid hormone response element.
    Guschin D; Chandler S; Wolffe AP
    Biochemistry; 1998 Jun; 37(24):8629-36. PubMed ID: 9628724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of DNA sequence and histone-histone interactions on nucleosome placement.
    Shrader TE; Crothers DM
    J Mol Biol; 1990 Nov; 216(1):69-84. PubMed ID: 2172553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinctive sequence patterns in metazoan and yeast nucleosomes: implications for linker histone binding to AT-rich and methylated DNA.
    Cui F; Zhurkin VB
    Nucleic Acids Res; 2009 May; 37(9):2818-29. PubMed ID: 19282449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome.
    Syed SH; Goutte-Gattat D; Becker N; Meyer S; Shukla MS; Hayes JJ; Everaers R; Angelov D; Bednar J; Dimitrov S
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9620-5. PubMed ID: 20457934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z.
    Hoch DA; Stratton JJ; Gloss LM
    J Mol Biol; 2007 Aug; 371(4):971-88. PubMed ID: 17597150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms.
    Louro JA; Boopathi R; Beinsteiner B; Mohideen Patel AK; Cheng TC; Angelov D; Hamiche A; Bendar J; Kale S; Klaholz BP; Dimitrov S
    Structure; 2023 Feb; 31(2):201-212.e5. PubMed ID: 36610392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone- and DNA sequence-dependent stability of nucleosomes studied by single-pair FRET.
    Tóth K; Böhm V; Sellmann C; Danner M; Hanne J; Berg M; Barz I; Gansen A; Langowski J
    Cytometry A; 2013 Sep; 83(9):839-46. PubMed ID: 23843180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes.
    Shen CH; Allan J
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo.
    Brown DT; Izard T; Misteli T
    Nat Struct Mol Biol; 2006 Mar; 13(3):250-5. PubMed ID: 16462749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Mechanisms of Nucleosome Recognition by Linker Histones.
    Zhou BR; Jiang J; Feng H; Ghirlando R; Xiao TS; Bai Y
    Mol Cell; 2015 Aug; 59(4):628-38. PubMed ID: 26212454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
    Caterino TL; Fang H; Hayes JJ
    Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain.
    Fang H; Clark DJ; Hayes JJ
    Nucleic Acids Res; 2012 Feb; 40(4):1475-84. PubMed ID: 22021384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helical repeat of DNA in the nucleosome core particle.
    Negri R; Buttinelli M; Panetta G; De Arcangelis V; Di Mauro E; Travers A
    Biochem Soc Trans; 2000; 28(4):373-6. PubMed ID: 10961922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural variability of nucleosomes detected by single-pair Förster resonance energy transfer: histone acetylation, sequence variation, and salt effects.
    Gansen A; Tóth K; Schwarz N; Langowski J
    J Phys Chem B; 2009 Mar; 113(9):2604-13. PubMed ID: 18950220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning.
    Moyle-Heyrman G; Zaichuk T; Xi L; Zhang Q; Uhlenbeck OC; Holmgren R; Widom J; Wang JP
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20158-63. PubMed ID: 24277842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Sequence-Dependent Binding of Linker Histone gH1 Regulates Nucleosome Conformations.
    Zhang H; Huo QY; Gao YQ
    J Phys Chem B; 2022 Sep; 126(36):6771-6779. PubMed ID: 36062461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.