These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3429354)

  • 1. Specialisations of the lateral membrane of inner hair cells.
    Forge A
    Hear Res; 1987 Nov; 31(1):99-109. PubMed ID: 3429354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features of the lateral walls in mammalian cochlear outer hair cells.
    Forge A
    Cell Tissue Res; 1991 Sep; 265(3):473-83. PubMed ID: 1786594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of the membrane of the stereocilia and cell apex in cochlear hair cells.
    Forge A; Davies S; Zajic G
    J Neurocytol; 1988 Jun; 17(3):325-34. PubMed ID: 3171608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered distribution of membrane-associated dense plaques in intact quail gizzard smooth muscle cells revealed by freeze-fracture following treatment with cholesterol probes.
    Davis EC; Shivers RR
    Anat Rec; 1992 Mar; 232(3):385-92. PubMed ID: 1543263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional specialization of the hair cell plasmalemma in the organ of corti.
    Gulley RL; Reese TS
    Anat Rec; 1977 Sep; 189(1):109-23. PubMed ID: 907202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of ultrastructure in isolated cochlear hair cells using a procedure for rapid freezing before freeze-fracture and deep-etching.
    Forge A; Davies S; Zajic G
    J Neurocytol; 1991 Jun; 20(6):471-84. PubMed ID: 1869884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-fracture studies on the synapse between the type I hair cell and the calyceal terminal in the guinea-pig vestibular system.
    Gulley RL; Bagger-Sjöbäck D
    J Neurocytol; 1979 Oct; 8(5):591-603. PubMed ID: 317909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quick-freeze, deep-etch visualization of the 'cytoskeletal spring' of cochlear outer hair cells.
    Arima T; Kuraoka A; Toriya R; Shibata Y; Uemura T
    Cell Tissue Res; 1991 Jan; 263(1):91-7. PubMed ID: 2009555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A freeze-fracture study of afferent and efferent synapses of hair cells in the sensory epithelium of the organ of Corti in the guinea pig.
    Saito K; Hama K
    Cell Tissue Res; 1984; 238(3):437-46. PubMed ID: 6525614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided three-dimensional reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea.
    Hashimoto S; Kimura RS; Takasaka T
    Acta Otolaryngol; 1990; 109(3-4):228-34. PubMed ID: 2316346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural variability of the sub-surface cisternae in intact, isolated outer hair cells shown by fluorescent labelling of intracellular membranes and freeze-fracture.
    Forge A; Zajic G; Li L; Nevill G; Schacht J
    Hear Res; 1993 Jan; 64(2):175-83. PubMed ID: 8432688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic structures in the type II hair cell in the vestibular system of the guinea pig. A freeze-fracture and TEM study.
    Bagger-Sjöbäck D; Gulley RL
    Acta Otolaryngol; 1979; 88(5-6):401-11. PubMed ID: 316962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serial reconstruction of inner hair cell afferent innervation using semithick sections.
    Siegel JH
    J Electron Microsc Tech; 1990 Jul; 15(3):197-208. PubMed ID: 2374033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane specializations in the human organ of Corti.
    Bagger-Sjöbäck D; Engström B; Hillerdal M
    Acta Otolaryngol; 1988; 106(1-2):19-28. PubMed ID: 3421096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap junctions contain different amounts of cholesterol which undergo unique sequestering processes during fiber cell differentiation in the embryonic chicken lens.
    Biswas SK; Lo WK
    Mol Vis; 2007 Mar; 13():345-59. PubMed ID: 17392685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A membrane-based force generation mechanism in auditory sensory cells.
    Kalinec F; Holley MC; Iwasa KH; Lim DJ; Kachar B
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8671-5. PubMed ID: 1528879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-fracture organization of hair cell synapses in the sensory epithelium of guinea pig organ of Corti.
    Saito K
    J Electron Microsc Tech; 1990 Jun; 15(2):173-86. PubMed ID: 2355268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane stains as an objective means to distinguish isolated inner and outer hair cells.
    Zajic G; Forge A; Schacht J
    Hear Res; 1993 Mar; 66(1):53-7. PubMed ID: 7682544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural organization of the outer hair cell wall.
    Lim DJ; Hanamure Y; Ohashi Y
    Acta Otolaryngol; 1989; 107(5-6):398-405. PubMed ID: 2756831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pathogenesis of stereocilia abnormalities in acoustic trauma.
    Thorne PR; Duncan CE; Gavin JB
    Hear Res; 1986; 21(1):41-9. PubMed ID: 3957794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.