These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34293549)

  • 1. The migration of NIAS from ethylene-vinyl acetate corks and their identification using gas chromatography mass spectrometry and liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry.
    Vera P; Canellas E; Nerín C; Dreolin N; Goshawk J
    Food Chem; 2022 Jan; 366():130592. PubMed ID: 34293549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometry: A Novel Technique Applied to Migration of Nonintentionally Added Substances from Polyethylene Films Intended for Use as Food Packaging.
    Vera P; Canellas E; Barknowitz G; Goshawk J; Nerín C
    Anal Chem; 2019 Oct; 91(20):12741-12751. PubMed ID: 31502827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion mobility quadrupole time-of-flight high resolution mass spectrometry coupled to ultra-high pressure liquid chromatography for identification of non-intentionally added substances migrating from food cans.
    Canellas E; Vera P; Nerín C; Dreolin N; Goshawk J
    J Chromatogr A; 2020 Apr; 1616():460778. PubMed ID: 31848030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a fast gas chromatography mass spectrometry method for the quantification of selected non-intentionally added substances and polystyrene/polyurethane oligomers in liquid food simulants.
    Tsochatzis ED; Gika H; Theodoridis G
    Anal Chim Acta; 2020 Sep; 1130():49-59. PubMed ID: 32892938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The detection and elucidation of oligomers migrating from biodegradable multilayer teacups using liquid chromatography coupled to ion mobility time-of-flight mass spectrometry and gas chromatography-mass spectrometry.
    Canellas E; Vera P; Nerin C; Dreolin N; Goshawk J
    Food Chem; 2022 Apr; 374():131777. PubMed ID: 34906802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry.
    Martínez-Bueno MJ; Hernando MD; Uclés S; Rajski L; Cimmino S; Fernández-Alba AR
    Talanta; 2017 Sep; 172():68-77. PubMed ID: 28602305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry for the identification of non-volatile compounds migrating from 'natural' dishes.
    Wrona M; Román A; Song XC; Nerín C; Dreolin N; Goshawk J; Asensio E
    J Chromatogr A; 2023 Feb; 1691():463836. PubMed ID: 36724720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the characterisation of non-intentionally added substances migrating from polyester-polyurethane lacquers by comprehensive gas chromatography-mass spectrometry technologies.
    Omer E; Bichon E; Hutinet S; Royer AL; Monteau F; Germon H; Hill P; Remaud G; Dervilly-Pinel G; Cariou R; Le Bizec B
    J Chromatogr A; 2019 Sep; 1601():327-334. PubMed ID: 31128881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion mobility quadrupole time-of-flight mass spectrometry for the identification of non-intentionally added substances in UV varnishes applied on food contact materials. A safety by design study.
    Canellas E; Vera P; Nerín C
    Talanta; 2019 Dec; 205():120103. PubMed ID: 31450433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of ion mobility time of flight mass spectrometry to elucidate neo-formed compounds derived from polyurethane adhesives used in champagne cork stoppers.
    Canellas E; Vera P; Nerin C; Goshawk J; Dreolin N
    Talanta; 2021 Nov; 234():122632. PubMed ID: 34364441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical tools for identification of non-intentionally added substances (NIAS) coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants.
    Félix JS; Isella F; Bosetti O; Nerín C
    Anal Bioanal Chem; 2012 Jul; 403(10):2869-82. PubMed ID: 22526644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing Chemical Migration from Plastic Food Packaging into Food Simulant by Gas and Liquid Chromatography with High-Resolution Mass Spectrometry.
    Taylor RB; Sapozhnikova Y
    J Agric Food Chem; 2022 Apr; 70(16):4805-4816. PubMed ID: 35380818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester.
    Ubeda S; Aznar M; Alfaro P; Nerín C
    Anal Bioanal Chem; 2019 Jun; 411(16):3521-3532. PubMed ID: 31053956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UPLC-ESI-Q-TOF-MS(E) and GC-MS identification and quantification of non-intentionally added substances coming from biodegradable food packaging.
    Canellas E; Vera P; Nerín C
    Anal Bioanal Chem; 2015 Sep; 407(22):6781-90. PubMed ID: 26138892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of chemicals migrating from plastic food contact materials for oven and microwave applications by liquid and gas chromatography - Orbitrap mass spectrometry.
    Sapozhnikova Y; Nuñez A; Johnston J
    J Chromatogr A; 2021 Aug; 1651():462261. PubMed ID: 34126375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of volatile non intentionally added substances coming from a starch-based biopolymer intended for food contact by different gas chromatography-mass spectrometry approaches.
    Osorio J; Dreolin N; Aznar M; Nerín C; Hancock P
    J Chromatogr A; 2019 Aug; 1599():215-222. PubMed ID: 30975529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The challenge of identifying non-intentionally added substances from food packaging materials: a review.
    Nerin C; Alfaro P; Aznar M; Domeño C
    Anal Chim Acta; 2013 May; 775():14-24. PubMed ID: 23601971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of volatile compounds and their sensory impact in a biopolymer based on polylactic acid (PLA) and polyester.
    Ubeda S; Aznar M; Nerín C
    Food Chem; 2019 Oct; 294():171-178. PubMed ID: 31126449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GC-MS Screening Analysis for the Identification of Potential Migrants in Plastic and Paper-Based Candy Wrappers.
    Galmán Graíño S; Sendón R; López Hernández J; Rodríguez-Bernaldo de Quirós A
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry as a tool for identification of volatile migrants from autoadhesive labels used for direct food contact.
    Canellas E; Vera P; Nerín C
    J Mass Spectrom; 2014 Nov; 49(11):1181-90. PubMed ID: 25395134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.