BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34293554)

  • 1. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions.
    Ying M; You D; Zhu X; Cai L; Zeng S; Hu X
    Redox Biol; 2021 Oct; 46():102065. PubMed ID: 34293554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.
    Chen L; Zhang Z; Hoshino A; Zheng HD; Morley M; Arany Z; Rabinowitz JD
    Nat Metab; 2019 Mar; 1():404-415. PubMed ID: 31058257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions.
    Yao P; Sun H; Xu C; Chen T; Zou B; Jiang P; Du W
    J Biol Chem; 2017 Oct; 292(41):17113-17120. PubMed ID: 28848047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repressing malic enzyme 1 redirects glucose metabolism, unbalances the redox state, and attenuates migratory and invasive abilities in nasopharyngeal carcinoma cell lines.
    Zheng FJ; Ye HB; Wu MS; Lian YF; Qian CN; Zeng YX
    Chin J Cancer; 2012 Nov; 31(11):519-31. PubMed ID: 23114090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux.
    Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F
    J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ME1 Regulates NADPH Homeostasis to Promote Gastric Cancer Growth and Metastasis.
    Lu YX; Ju HQ; Liu ZX; Chen DL; Wang Y; Zhao Q; Wu QN; Zeng ZL; Qiu HB; Hu PS; Wang ZQ; Zhang DS; Wang F; Xu RH
    Cancer Res; 2018 Apr; 78(8):1972-1985. PubMed ID: 29654155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation.
    Palmieri EM; Spera I; Menga A; Infantino V; Porcelli V; Iacobazzi V; Pierri CL; Hooper DC; Palmieri F; Castegna A
    Biochim Biophys Acta; 2015 Aug; 1847(8):729-38. PubMed ID: 25917893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Redox State and Efficiency of Glucose Oxidation With miR Based Suppression of Maladaptive NADPH-Dependent Malic Enzyme 1 Expression in Hypertrophied Hearts.
    Lahey R; Carley AN; Wang X; Glass CE; Accola KD; Silvestry S; O'Donnell JM; Lewandowski ED
    Circ Res; 2018 Mar; 122(6):836-845. PubMed ID: 29386187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP-dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependent 'malic' enzyme.
    Costa Rosa LF; Curi R; Murphy C; Newsholme P
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):709-14. PubMed ID: 7654215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress.
    Gelman SJ; Naser F; Mahieu NG; McKenzie LD; Dunn GP; Chheda MG; Patti GJ
    Cell Rep; 2018 Jan; 22(2):512-522. PubMed ID: 29320744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.
    Jiang L; Shestov AA; Swain P; Yang C; Parker SJ; Wang QA; Terada LS; Adams ND; McCabe MT; Pietrak B; Schmidt S; Metallo CM; Dranka BP; Schwartz B; DeBerardinis RJ
    Nature; 2016 Apr; 532(7598):255-8. PubMed ID: 27049945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma.
    Yang Y; Lane AN; Ricketts CJ; Sourbier C; Wei MH; Shuch B; Pike L; Wu M; Rouault TA; Boros LG; Fan TW; Linehan WM
    PLoS One; 2013; 8(8):e72179. PubMed ID: 23967283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of malic enzyme 1 disrupts cellular metabolism and leads to vulnerability in cancer cells in glucose-restricted conditions.
    Murai S; Ando A; Ebara S; Hirayama M; Satomi Y; Hara T
    Oncogenesis; 2017 May; 6(5):e329. PubMed ID: 28481367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems.
    Ratledge C
    Biotechnol Lett; 2014 Aug; 36(8):1557-68. PubMed ID: 24752812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic reduction of the cytosolic or mitochondrial NAD(P)-malic enzyme does not affect insulin secretion in a rat insulinoma cell line.
    Brown LJ; Longacre MJ; Hasan NM; Kendrick MA; Stoker SW; Macdonald MJ
    J Biol Chem; 2009 Dec; 284(51):35359-67. PubMed ID: 19858194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death.
    Balsa E; Perry EA; Bennett CF; Jedrychowski M; Gygi SP; Doench JG; Puigserver P
    Nat Commun; 2020 Jun; 11(1):2714. PubMed ID: 32483148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria contribute to NADPH generation in mouse rod photoreceptors.
    Adler L; Chen C; Koutalos Y
    J Biol Chem; 2014 Jan; 289(3):1519-28. PubMed ID: 24297174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic ME1 integrated with mitochondrial IDH2 supports tumor growth and metastasis.
    Shao C; Lu W; Du Y; Yan W; Bao Q; Tian Y; Wang G; Ye H; Hao H
    Redox Biol; 2020 Sep; 36():101685. PubMed ID: 32853879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary.
    Flint AP; Denton RM
    Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.