These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34293602)

  • 21. Impact of a passive upper-body exoskeleton on muscle activity, heart rate and discomfort during a carrying task.
    Garcia G; Arauz PG; Alvarez I; Encalada N; Vega S; Martin BJ
    PLoS One; 2023; 18(6):e0287588. PubMed ID: 37352272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting.
    Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design, Modeling, and Demonstration of a New Dual-Mode Back-Assist Exosuit with Extension Mechanism.
    Lamers EP; Zelik KE
    Wearable Technol; 2021; 2():. PubMed ID: 36325150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting.
    Koopman AS; Kingma I; de Looze MP; van Dieën JH
    J Biomech; 2020 Mar; 102():109486. PubMed ID: 31718821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological and kinematic effects of a soft exosuit on arm movements.
    Xiloyannis M; Chiaradia D; Frisoli A; Masia L
    J Neuroeng Rehabil; 2019 Feb; 16(1):29. PubMed ID: 30791919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Pilot Study of Varying Thoracic and Abdominal Compression in a Reconfigurable Trunk Exoskeleton During Different Activities.
    Gorsic M; Regmi Y; Johnson AP; Dai B; Novak D
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1585-1594. PubMed ID: 31502962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks.
    Madinei S; Nussbaum MA
    J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the Auxivo CarrySuit occupational exoskeleton when carrying front and side loads on a treadmill.
    Goršič M; Novak VD
    J Biomech; 2023 Jul; 156():111692. PubMed ID: 37348177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysing the effect of wearable lift-assist vest in squat lifting task using back muscle EMG data and musculoskeletal model.
    Ataei G; Abedi R; Mohammadi Y; Fatouraee N
    Phys Eng Sci Med; 2020 Jun; 43(2):651-658. PubMed ID: 32524453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical assessment of two back-support exoskeletons in symmetric and asymmetric repetitive lifting with moderate postural demands.
    Madinei S; Alemi MM; Kim S; Srinivasan D; Nussbaum MA
    Appl Ergon; 2020 Oct; 88():103156. PubMed ID: 32678776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential exoskeleton uses for reducing low back muscular activity during farm tasks.
    Thamsuwan O; Milosavljevic S; Srinivasan D; Trask C
    Am J Ind Med; 2020 Nov; 63(11):1017-1028. PubMed ID: 32926450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks.
    Hwang J; Kumar Yerriboina VN; Ari H; Kim JH
    Appl Ergon; 2021 May; 93():103373. PubMed ID: 33516046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motor variability during a repetitive lifting task is impaired by wearing a passive back-support exoskeleton.
    Rimmele P; Steinhilber B; Rieger MA; Luger T
    J Electromyogr Kinesiol; 2023 Feb; 68():102739. PubMed ID: 36566692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using a Passive Back Exoskeleton During a Simulated Sorting Task: Influence on Muscle Activity, Posture, and Heart Rate.
    Bär M; Luger T; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2024 Jan; 66(1):40-55. PubMed ID: 35225011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Eur J Appl Physiol; 2022 Dec; 122(12):2575-2583. PubMed ID: 36074202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulating device-to-body forces in passive exosuit: An experimental investigation on the effect of moment arm orientation using passive back-assist exosuit emulator.
    Bhardwaj S; Shinde AB; Singh R; Vashista V
    Wearable Technol; 2023; 4():e17. PubMed ID: 38487771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biomechanical comparison of lifting techniques between subjects with and without chronic low back pain during freestyle lifting and lowering tasks.
    Larivière C; Gagnon D; Loisel P
    Clin Biomech (Bristol, Avon); 2002 Feb; 17(2):89-98. PubMed ID: 11832258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton.
    Di Natali C; Buratti G; Dellera L; Caldwell D
    Appl Ergon; 2024 Jul; 118():104278. PubMed ID: 38626669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking.
    Nuckols RW; Lee S; Swaminathan K; Orzel D; Howe RD; Walsh CJ
    Sci Robot; 2021 Nov; 6(60):eabj1362. PubMed ID: 34757803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.