These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34293687)

  • 1. Economizing the lignocellulosic hydrolysis process using heterologously expressed auxiliary enzymes feruloyl esterase D (CE1) and β-xylosidase (GH43) derived from thermophilic fungi Scytalidium thermophilum.
    Agrawal D; Tsang A; Chadha BS
    Bioresour Technol; 2021 Nov; 339():125603. PubMed ID: 34293687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails.
    Agrawal D; Basotra N; Balan V; Tsang A; Chadha BS
    Appl Biochem Biotechnol; 2020 Jun; 191(2):463-481. PubMed ID: 31792786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secreted protein extract analyses present the plant pathogen Alternaria alternata as a suitable industrial enzyme toolbox.
    García-Calvo L; Ullán RV; Fernández-Aguado M; García-Lino AM; Balaña-Fouce R; Barreiro C
    J Proteomics; 2018 Apr; 177():48-64. PubMed ID: 29438850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan.
    Yang X; Shi P; Huang H; Luo H; Wang Y; Zhang W; Yao B
    Food Chem; 2014 Apr; 148():381-7. PubMed ID: 24262572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EcXyl43 β-xylosidase: molecular modeling, activity on natural and artificial substrates, and synergism with endoxylanases for lignocellulose deconstruction.
    Ontañon OM; Ghio S; Marrero Díaz de Villegas R; Piccinni FE; Talia PM; Cerutti ML; Campos E
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6959-6971. PubMed ID: 29876606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and biochemical properties of a thermostable xylose-tolerant beta- D-xylosidase from Scytalidium thermophilum.
    Zanoelo FF; Polizeli Md Mde L; Terenzi HF; Jorge JA
    J Ind Microbiol Biotechnol; 2004 May; 31(4):170-6. PubMed ID: 15160297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of GH11 xylanase and GH43 xylosidase from the chytridiomycetous fungus, Rhizophlyctis rosea.
    Huang Y; Zheng X; Pilgaard B; Holck J; Muschiol J; Li S; Lange L
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):777-791. PubMed ID: 30397764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum.
    Li Q; Wu T; Qi Z; Zhao L; Pei J; Tang F
    BMC Biotechnol; 2018 May; 18(1):29. PubMed ID: 29783967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases.
    Badhan A; Wang Y; Gruninger R; Patton D; Powlowski J; Tsang A; McAllister T
    BMC Biotechnol; 2014 Apr; 14():31. PubMed ID: 24766728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ.
    Blum DL; Kataeva IA; Li XL; Ljungdahl LG
    J Bacteriol; 2000 Mar; 182(5):1346-51. PubMed ID: 10671457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Validation of Two Fungal Subfamilies in Carbohydrate Esterase Family 1 by Biochemical Characterization of Esterases From Uncharacterized Branches.
    Li X; Griffin K; Langeveld S; Frommhagen M; Underlin EN; Kabel MA; de Vries RP; Dilokpimol A
    Front Bioeng Biotechnol; 2020; 8():694. PubMed ID: 32671051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of novel fungal Carbohydrate Esterase family 1 enzymes identifies three novel dual feruloyl/acetyl xylan esterases.
    Dilokpimol A; Verkerk B; Li X; Bellemare A; Lavallee M; Frommhagen M; Underlin EN; Kabel MA; Powlowski J; Tsang A; de Vries RP
    FEBS Lett; 2022 Aug; 596(15):1932-1943. PubMed ID: 35187647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production.
    Boyce A; Walsh G
    Appl Biochem Biotechnol; 2018 Nov; 186(3):712-730. PubMed ID: 29728961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bifunctional acetyl xylan esterase/arabinofuranosidase from Penicillium chrysogenum P33 enhances enzymatic hydrolysis of lignocellulose.
    Yang Y; Zhu N; Yang J; Lin Y; Liu J; Wang R; Wang F; Yuan H
    Microb Cell Fact; 2017 Sep; 16(1):166. PubMed ID: 28950907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation.
    Ma J; Ma Y; Li Y; Sun Z; Sun X; Padmakumar V; Cheng Y; Zhu W
    World J Microbiol Biotechnol; 2022 Nov; 39(1):17. PubMed ID: 36409385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1.
    Bhalla A; Bischoff KM; Sani RK
    BMC Biotechnol; 2014 Dec; 14():963. PubMed ID: 25532585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance.
    Diogo JA; Hoffmam ZB; Zanphorlin LM; Cota J; Machado CB; Wolf LD; Squina F; Damásio AR; Murakami MT; Ruller R
    Enzyme Microb Technol; 2015 Feb; 69():31-7. PubMed ID: 25640722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and properties of extracellular beta-xylosidases from fungi Aspergillus japonicus and Trichoderma reesei.
    Semenova MV; Drachevskaya MI; Sinitsyna OA; Gusakov AV; Sinitsyn AP
    Biochemistry (Mosc); 2009 Sep; 74(9):1002-8. PubMed ID: 19916911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous expression and characterization of a xylanase and xylosidase from white rot fungi and their application in synergistic hydrolysis of lignocellulose.
    Zhuo R; Yu H; Qin X; Ni H; Jiang Z; Ma F; Zhang X
    Chemosphere; 2018 Dec; 212():24-33. PubMed ID: 30138852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis.
    Cintra LC; Fernandes AG; Oliveira ICM; Siqueira SJL; Costa IGO; Colussi F; Jesuíno RSA; Ulhoa CJ; Faria FP
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):262-271. PubMed ID: 28693992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.