These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34293874)

  • 1. Impacts of mutations on dynamic allostery of adenylate kinase.
    Song H; Wutthinitikornkit Y; Zhou X; Li J
    J Chem Phys; 2021 Jul; 155(3):035101. PubMed ID: 34293874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Many local motions cooperate to produce the adenylate kinase conformational transition.
    Daily MD; Phillips GN; Cui Q
    J Mol Biol; 2010 Jul; 400(3):618-31. PubMed ID: 20471396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation.
    Tugarinov V; Shapiro YE; Liang Z; Freed JH; Meirovitch E
    J Mol Biol; 2002 Jan; 315(2):155-70. PubMed ID: 11779236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconversion of functional motions between mesophilic and thermophilic adenylate kinases.
    Daily MD; Phillips GN; Cui Q
    PLoS Comput Biol; 2011 Jul; 7(7):e1002103. PubMed ID: 21779157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The atomistic mechanism of conformational transition in adenylate kinase: a TEE-REX molecular dynamics study.
    Kubitzki MB; de Groot BL
    Structure; 2008 Aug; 16(8):1175-82. PubMed ID: 18682219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum free energy path of ligand-induced transition in adenylate kinase.
    Matsunaga Y; Fujisaki H; Terada T; Furuta T; Moritsugu K; Kidera A
    PLoS Comput Biol; 2012; 8(6):e1002555. PubMed ID: 22685395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain flexibility in ligand-free and inhibitor-bound Escherichia coli adenylate kinase based on a mode-coupling analysis of 15N spin relaxation.
    Shapiro YE; Kahana E; Tugarinov V; Liang Z; Freed JH; Meirovitch E
    Biochemistry; 2002 May; 41(20):6271-81. PubMed ID: 12009888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic allostery can drive cold adaptation in enzymes.
    Saavedra HG; Wrabl JO; Anderson JA; Li J; Hilser VJ
    Nature; 2018 Jun; 558(7709):324-328. PubMed ID: 29875414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis.
    Cukier RI
    J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins.
    Schrank TP; Bolen DW; Hilser VJ
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16984-9. PubMed ID: 19805185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of human adenylate kinase 4 (L171P) suggests the role of hinge region in protein domain motion.
    Liu R; Xu H; Wei Z; Wang Y; Lin Y; Gong W
    Biochem Biophys Res Commun; 2009 Jan; 379(1):92-7. PubMed ID: 19073142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation energy of catalysis-related domain motion in E. coli adenylate kinase.
    Shapiro YE; Meirovitch E
    J Phys Chem B; 2006 Jun; 110(23):11519-24. PubMed ID: 16771428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a mechanism of AMP-substrate inhibition in adenylate kinase from Escherichia coli.
    Sinev MA; Sineva EV; Ittah V; Haas E
    FEBS Lett; 1996 Nov; 397(2-3):273-6. PubMed ID: 8955362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations.
    Schrank TP; Wrabl JO; Hilser VJ
    Top Curr Chem; 2013; 337():95-121. PubMed ID: 23543318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone dynamics of escherichia coli adenylate kinase at the extreme stages of the catalytic cycle studied by (15)N NMR relaxation.
    Shapiro YE; Sinev MA; Sineva EV; Tugarinov V; Meirovitch E
    Biochemistry; 2000 Jun; 39(22):6634-44. PubMed ID: 10828981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential dynamics sampling study of adenylate kinase: comparison to citrate synthase and implication for the hinge and shear mechanisms of domain motions.
    Snow C; Qi G; Hayward S
    Proteins; 2007 May; 67(2):325-37. PubMed ID: 17299745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data.
    Temiz NA; Meirovitch E; Bahar I
    Proteins; 2004 Nov; 57(3):468-80. PubMed ID: 15382240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain closure in adenylate kinase.
    Sinev MA; Sineva EV; Ittah V; Haas E
    Biochemistry; 1996 May; 35(20):6425-37. PubMed ID: 8639589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate Binding Specifically Modulates Domain Arrangements in Adenylate Kinase.
    Zeller F; Zacharias M
    Biophys J; 2015 Nov; 109(9):1978-85. PubMed ID: 26536274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.
    Jana B; Adkar BV; Biswas R; Bagchi B
    J Chem Phys; 2011 Jan; 134(3):035101. PubMed ID: 21261390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.