These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34293874)
41. On the roles of substrate binding and hinge unfolding in conformational changes of adenylate kinase. Brokaw JB; Chu JW Biophys J; 2010 Nov; 99(10):3420-9. PubMed ID: 21081091 [TBL] [Abstract][Full Text] [Related]
42. Computing free energy of a large-scale allosteric transition in adenylate kinase using all atom explicit solvent simulations. Potoyan DA; Zhuravlev PI; Papoian GA J Phys Chem B; 2012 Feb; 116(5):1709-15. PubMed ID: 22212071 [TBL] [Abstract][Full Text] [Related]
43. Folding funnels and conformational transitions via hinge-bending motions. Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256 [TBL] [Abstract][Full Text] [Related]
44. Substrate binding causes movement in the ATP binding domain of Escherichia coli adenylate kinase. Bilderback T; Fulmer T; Mantulin WW; Glaser M Biochemistry; 1996 May; 35(19):6100-6. PubMed ID: 8634252 [TBL] [Abstract][Full Text] [Related]
45. The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Berry MB; Meador B; Bilderback T; Liang P; Glaser M; Phillips GN Proteins; 1994 Jul; 19(3):183-98. PubMed ID: 7937733 [TBL] [Abstract][Full Text] [Related]
46. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. Nam K; Arattu Thodika AR; Grundström C; Sauer UH; Wolf-Watz M J Chem Inf Model; 2024 Jan; 64(1):150-163. PubMed ID: 38117131 [TBL] [Abstract][Full Text] [Related]
47. Domain mobility in proteins from NMR/SRLS. Shapiro YE; Kahana E; Meirovitch E J Phys Chem B; 2009 Sep; 113(35):12050-60. PubMed ID: 19673471 [TBL] [Abstract][Full Text] [Related]
48. Cloning and characterization of adenylate kinase from Chlamydia pneumoniae. Miura K; Inouye S; Sakai K; Takaoka H; Kishi F; Tabuchi M; Tanaka T; Matsumoto H; Shirai M; Nakazawa T; Nakazawa A J Biol Chem; 2001 Apr; 276(16):13490-8. PubMed ID: 11278507 [TBL] [Abstract][Full Text] [Related]
49. The Atomistic Mechanism of Conformational Transition of Adenylate Kinase Investigated by Lorentzian Structure-Based Potential. Lee J; Joo K; Brooks BR; Lee J J Chem Theory Comput; 2015 Jul; 11(7):3211-24. PubMed ID: 26575758 [TBL] [Abstract][Full Text] [Related]
50. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C. Krishnamurthy H; Munro K; Yan H; Vieille C Biochemistry; 2009 Mar; 48(12):2723-39. PubMed ID: 19220019 [TBL] [Abstract][Full Text] [Related]
51. The chaperone activity of trigger factor is distinct from its isomerase activity during co-expression with adenylate kinase in Escherichia coli. Li ZY; Liu CP; Zhu LQ; Jing GZ; Zhou JM FEBS Lett; 2001 Oct; 506(2):108-12. PubMed ID: 11591381 [TBL] [Abstract][Full Text] [Related]
52. Structural topology and activation of an initial adenylate kinase-substrate complex. Ådén J; Weise CF; Brännström K; Olofsson A; Wolf-Watz M Biochemistry; 2013 Feb; 52(6):1055-61. PubMed ID: 23339454 [TBL] [Abstract][Full Text] [Related]
53. How many atoms are required to characterize accurately trajectory fluctuations of a protein? Cukier RI J Chem Phys; 2010 Jun; 132(24):245101. PubMed ID: 20590215 [TBL] [Abstract][Full Text] [Related]
54. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase. Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945 [TBL] [Abstract][Full Text] [Related]
55. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Krishnamurthy H; Lou H; Kimple A; Vieille C; Cukier RI Proteins; 2005 Jan; 58(1):88-100. PubMed ID: 15521058 [TBL] [Abstract][Full Text] [Related]
56. The lid domain is important, but not essential, for catalysis of Escherichia coli pyruvate kinase. Sugrue E; Coombes D; Wood D; Zhu T; Donovan KA; Dobson RCJ Eur Biophys J; 2020 Dec; 49(8):761-772. PubMed ID: 32978636 [TBL] [Abstract][Full Text] [Related]
57. Protein tolerance to random circular permutation correlates with thermostability and local energetics of residue-residue contacts. Atkinson JT; Jones AM; Nanda V; Silberg JJ Protein Eng Des Sel; 2019 Dec; 32(11):489-501. PubMed ID: 32626892 [TBL] [Abstract][Full Text] [Related]
58. Structural basis for ligand binding to an enzyme by a conformational selection pathway. Kovermann M; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6298-6303. PubMed ID: 28559350 [TBL] [Abstract][Full Text] [Related]
59. Mechanism of adenylate kinase. The "essential lysine" helps to orient the phosphates and the active site residues to proper conformations. Byeon L; Shi Z; Tsai MD Biochemistry; 1995 Mar; 34(10):3172-82. PubMed ID: 7880812 [TBL] [Abstract][Full Text] [Related]
60. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle. Banerjee R; Jayaraj GG; Peter JJ; Kumar V; Mapa K FEBS J; 2016 Aug; 283(15):2853-68. PubMed ID: 27248857 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]