These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34293894)

  • 1. Tagged-particle motion of Percus-Yevick hard spheres from first principles.
    Luo C; Debets VE; Janssen LMC
    J Chem Phys; 2021 Jul; 155(3):034502. PubMed ID: 34293894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized mode-coupling theory of the glass transition. I. Numerical results for Percus-Yevick hard spheres.
    Luo C; Janssen LMC
    J Chem Phys; 2020 Dec; 153(21):214507. PubMed ID: 33291925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized mode-coupling theory of the glass transition. II. Analytical scaling laws.
    Luo C; Janssen LMC
    J Chem Phys; 2020 Dec; 153(21):214506. PubMed ID: 33291926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glassy dynamics of sticky hard spheres beyond the mode-coupling regime.
    Luo C; Janssen LMC
    Soft Matter; 2021 Sep; 17(33):7645-7661. PubMed ID: 34373889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized mode-coupling theory for mixtures of Brownian particles.
    Debets VE; Luo C; Ciarella S; Janssen LMC
    Phys Rev E; 2021 Dec; 104(6-2):065302. PubMed ID: 35030832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-component generalized mode-coupling theory: predicting dynamics from structure in glassy mixtures.
    Ciarella S; Luo C; Debets VE; Janssen LMC
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):91. PubMed ID: 34231080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonergodicity parameters of confined hard-sphere glasses.
    Mandal S; Lang S; Boţan V; Franosch T
    Soft Matter; 2017 Sep; 13(36):6167-6177. PubMed ID: 28796271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binary colloidal glasses: linear viscoelasticity and its link to the microscopic structure and dynamics.
    Sentjabrskaja T; Jacob AR; Egelhaaf SU; Petekidis G; Voigtmann T; Laurati M
    Soft Matter; 2019 Mar; 15(10):2232-2244. PubMed ID: 30794267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Idealized glass transitions for a system of dumbbell molecules.
    Chong SH; Götze W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041503. PubMed ID: 12005825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random close packing from hard-sphere Percus-Yevick theory.
    Katzav E; Berdichevsky R; Schwartz M
    Phys Rev E; 2019 Jan; 99(1-1):012146. PubMed ID: 30780241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hard sphere-like glass transition in eye lens α-crystallin solutions.
    Foffi G; Savin G; Bucciarelli S; Dorsaz N; Thurston GM; Stradner A; Schurtenberger P
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):16748-53. PubMed ID: 25385638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow dynamics of the high density Gaussian core model.
    Ikeda A; Miyazaki K
    J Chem Phys; 2011 Aug; 135(5):054901. PubMed ID: 21823726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluids of hard ellipsoids: Phase diagram including a nematic instability from Percus-Yevick theory.
    Letz M; Latz A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5865-71. PubMed ID: 11970486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Violation of Stokes-Einstein and Stokes-Einstein-Debye relations in polymers at the gas-supercooled liquid coexistence.
    Singh J; Jose PP
    J Phys Condens Matter; 2020 Nov; 33(5):. PubMed ID: 32977320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reorientational relaxation of a linear probe molecule in a simple glassy liquid.
    Götze W; Singh AP; Voigtmann T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6934-49. PubMed ID: 11088386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tagged-particle dynamics in confined colloidal liquids.
    Jung G; Schrack L; Franosch T
    Phys Rev E; 2020 Sep; 102(3-1):032611. PubMed ID: 33075887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems.
    van Zon R; Schofield J
    J Phys Chem B; 2005 Nov; 109(45):21425-36. PubMed ID: 16853780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations and mode-coupling theory of glass-forming confined hard-sphere fluids.
    Jung G; Franosch T
    Phys Rev E; 2023 May; 107(5-1):054101. PubMed ID: 37328986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
    Weysser F; Puertas AM; Fuchs M; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid.
    Chong SH; Götze W; Singh AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011206. PubMed ID: 11304245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.