These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34293897)

  • 1. Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments.
    Verma P; Huntington L; Coons MP; Kawashima Y; Yamazaki T; Zaribafiyan A
    J Chem Phys; 2021 Jul; 155(3):034110. PubMed ID: 34293897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resource-Efficient Chemistry on Quantum Computers with the Variational Quantum Eigensolver and the Double Unitary Coupled-Cluster Approach.
    Metcalf M; Bauman NP; Kowalski K; de Jong WA
    J Chem Theory Comput; 2020 Oct; 16(10):6165-6175. PubMed ID: 32915568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Stabilizer Framework for the Contextual Subspace Variational Quantum Eigensolver and the Noncontextual Projection Ansatz.
    Weaving T; Ralli A; Kirby WM; Tranter A; Love PJ; Coveney PV
    J Chem Theory Comput; 2023 Feb; 19(3):808-821. PubMed ID: 36689668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Simulation of Molecular Electronic States with a Transcorrelated Hamiltonian: Higher Accuracy with Fewer Qubits.
    Kumar A; Asthana A; Masteran C; Valeev EF; Zhang Y; Cincio L; Tretiak S; Dub PA
    J Chem Theory Comput; 2022 Sep; 18(9):5312-5324. PubMed ID: 35984716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals.
    Nykänen A; Miller A; Talarico W; Knecht S; Kovyrshin A; Skogh M; Tornberg L; Broo A; Mensa S; Symons BCB; Sahin E; Crain J; Tavernelli I; Pavošević F
    J Chem Theory Comput; 2023 Dec; 19(24):9269-9277. PubMed ID: 38081802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Algorithm of the Divide-and-Conquer Unitary Coupled Cluster Method with a Variational Quantum Eigensolver.
    Yoshikawa T; Takanashi T; Nakai H
    J Chem Theory Comput; 2022 Sep; 18(9):5360-5373. PubMed ID: 35926142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational quantum eigensolver simulations with the multireference unitary coupled cluster ansatz: a case study of the
    Sugisaki K; Kato T; Minato Y; Okuwaki K; Mochizuki Y
    Phys Chem Chem Phys; 2022 Apr; 24(14):8439-8452. PubMed ID: 35343527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Neural Network Assisted Quantum Chemistry Calculations on Quantum Computers.
    Ghosh K; Kumar S; Rajan NM; Yamijala SSRKC
    ACS Omega; 2023 Dec; 8(50):48211-48220. PubMed ID: 38144092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Step-Merged Quantum Imaginary Time Evolution Algorithm for Quantum Chemistry.
    Gomes N; Zhang F; Berthusen NF; Wang CZ; Ho KM; Orth PP; Yao Y
    J Chem Theory Comput; 2020 Oct; 16(10):6256-6266. PubMed ID: 32877181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal State Reduction Variational Eigensolver for the Excited-State Calculations on Quantum Computers.
    Xie QX; Liu S; Zhao Y
    J Chem Theory Comput; 2022 Jun; 18(6):3737-3746. PubMed ID: 35621354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment molecular orbital-based variational quantum eigensolver for quantum chemistry in the age of quantum computing.
    Lim H; Kang DH; Kim J; Pellow-Jarman A; McFarthing S; Pellow-Jarman R; Jeon HN; Oh B; Rhee JK; No KT
    Sci Rep; 2024 Jan; 14(1):2422. PubMed ID: 38287087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational quantum eigensolver for closed-shell molecules with non-bosonic corrections.
    Kim K; Lim S; Shin K; Lee G; Jung Y; Kyoung W; Rhee JK; Rhee YM
    Phys Chem Chem Phys; 2024 Mar; 26(10):8390-8396. PubMed ID: 38406868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio molecular dynamics on quantum computers.
    Fedorov DA; Otten MJ; Gray SK; Alexeev Y
    J Chem Phys; 2021 Apr; 154(16):164103. PubMed ID: 33940828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-consistency and orbital-invariance issues revealed by VQE-UCCSD calculations with the FMO scheme.
    Sugisaki K; Nakano T; Mochizuki Y
    J Comput Chem; 2024 Oct; 45(26):2204-2213. PubMed ID: 38795375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Consistent Field Approach for the Variational Quantum Eigensolver: Orbital Optimization Goes Adaptive.
    Fitzpatrick A; Nykänen A; Talarico NW; Lunghi A; Maniscalco S; García-Pérez G; Knecht S
    J Phys Chem A; 2024 Apr; 128(14):2843-2856. PubMed ID: 38547028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of basis sets and ansatze building to quantum computing in chemistry.
    Porto CM; Nome RA; Morgon NH
    J Mol Model; 2024 Jul; 30(8):275. PubMed ID: 39028362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational Quantum-Neural Hybrid Eigensolver.
    Zhang SX; Wan ZQ; Lee CK; Hsieh CY; Zhang S; Yao H
    Phys Rev Lett; 2022 Mar; 128(12):120502. PubMed ID: 35394326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the simulation of large scale protein-ligand interactions on NISQ-era quantum computers.
    Malone FD; Parrish RM; Welden AR; Fox T; Degroote M; Kyoseva E; Moll N; Santagati R; Streif M
    Chem Sci; 2022 Mar; 13(11):3094-3108. PubMed ID: 35414867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave Function Adapted Hamiltonians for Quantum Computing.
    Ratini L; Capecci C; Benfenati F; Guidoni L
    J Chem Theory Comput; 2022 Feb; 18(2):899-909. PubMed ID: 35041784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folded Spectrum VQE: A Quantum Computing Method for the Calculation of Molecular Excited States.
    Cadi Tazi L; Thom AJW
    J Chem Theory Comput; 2024 Mar; 20(6):2491-2504. PubMed ID: 38492238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.