BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34293961)

  • 1. Oxidative Stress and Localization Status of Hepatocellular Transporters: Impact on Bile Secretion and Role of Signaling Pathways.
    Basiglio CL; Crocenzi FA; Sánchez Pozzi EJ; Roma MG
    Antioxid Redox Signal; 2021 Oct; 35(10):808-831. PubMed ID: 34293961
    [No Abstract]   [Full Text] [Related]  

  • 2. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis.
    Roma MG; Barosso IR; Miszczuk GS; Crocenzi FA; Pozzi EJS
    Curr Med Chem; 2019; 26(7):1113-1154. PubMed ID: 29210641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic localization of hepatocellular transporters in health and disease.
    Roma MG; Crocenzi FA; Mottino AD
    World J Gastroenterol; 2008 Nov; 14(44):6786-801. PubMed ID: 19058304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects.
    Roma MG; Crocenzi FA; Sánchez Pozzi EA
    Clin Sci (Lond); 2008 May; 114(9):567-88. PubMed ID: 18377365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme oxygenase-1 induction by hemin prevents oxidative stress-induced acute cholestasis in the rat.
    Martín PL; Ceccatto P; Razori MV; Francés DEA; Arriaga SMM; Pisani GB; Martínez AI; Sánchez Pozzi EJ; Roma MG; Basiglio CL
    Clin Sci (Lond); 2019 Jan; 133(1):117-134. PubMed ID: 30538149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of synthesis and trafficking of canalicular transporters and its alteration in acquired hepatocellular cholestasis. Experimental therapeutic strategies for its prevention.
    Crocenzi FA; Mottino AD; Roma MG
    Curr Med Chem; 2004 Feb; 11(4):501-24. PubMed ID: 14965230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization status of hepatocellular transporters in cholestasis.
    Crocenzi FA; Zucchetti AE; Boaglio AC; Barosso IR; Sanchez Pozzi EJ; Mottino AD; Roma MG
    Front Biosci (Landmark Ed); 2012 Jan; 17(4):1201-18. PubMed ID: 22201798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological concentrations of unconjugated bilirubin prevent oxidative stress-induced hepatocanalicular dysfunction and cholestasis.
    Basiglio CL; Toledo FD; Boaglio AC; Arriaga SM; Ochoa JE; Sánchez Pozzi EJ; Mottino AD; Roma MG
    Arch Toxicol; 2014 Feb; 88(2):501-14. PubMed ID: 24306262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress: a radical way to stop making bile.
    Roma MG; Sanchez Pozzi EJ
    Ann Hepatol; 2008; 7(1):16-33. PubMed ID: 18376363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitogen-activated protein kinases are involved in hepatocanalicular dysfunction and cholestasis induced by oxidative stress.
    Toledo FD; Basiglio CL; Barosso IR; Boaglio AC; Zucchetti AE; Sánchez Pozzi EJ; Roma MG
    Arch Toxicol; 2017 Jun; 91(6):2391-2403. PubMed ID: 27913845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes.
    Burban A; Sharanek A; Guguen-Guillouzo C; Guillouzo A
    Free Radic Biol Med; 2018 Feb; 115():166-178. PubMed ID: 29191461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis.
    Muchova L; Vanova K; Suk J; Micuda S; Dolezelova E; Fuksa L; Cerny D; Farghali H; Zelenkova M; Lenicek M; Wong RJ; Vreman HJ; Vitek L
    J Cell Mol Med; 2015 May; 19(5):924-33. PubMed ID: 25683492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-dependent protein kinase C isoforms induce cholestasis in rat liver.
    Kubitz R; Saha N; Kühlkamp T; Dutta S; vom Dahl S; Wettstein M; Häussinger D
    J Biol Chem; 2004 Mar; 279(11):10323-30. PubMed ID: 14679204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of protein kinase C isoforms in bile formation and cholestasis.
    Anwer MS
    Hepatology; 2014 Sep; 60(3):1090-7. PubMed ID: 24700589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation.
    Gehrke N; Nagel M; Straub BK; Wörns MA; Schuchmann M; Galle PR; Schattenberg JM
    Am J Physiol Gastrointest Liver Physiol; 2018 Mar; 314(3):G319-G333. PubMed ID: 29191940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholestatic effect of large bilirubin loads and cholestasis protection conferred by cholic acid co-infusion: a molecular and ultrastructural study.
    Labori KJ; Arnkvaern K; Bjørnbeth BA; Press CM; Raeder MG
    Scand J Gastroenterol; 2002 May; 37(5):585-96. PubMed ID: 12059062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ERK1/2 and p38 MAPKs are complementarily involved in estradiol 17ß-D-glucuronide-induced cholestasis: crosstalk with cPKC and PI3K.
    Boaglio AC; Zucchetti AE; Toledo FD; Barosso IR; Sánchez Pozzi EJ; Crocenzi FA; Roma MG
    PLoS One; 2012; 7(11):e49255. PubMed ID: 23166621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress.
    Muchova L; Vanova K; Zelenka J; Lenicek M; Petr T; Vejrazka M; Sticova E; Vreman HJ; Wong RJ; Vitek L
    J Cell Mol Med; 2011 May; 15(5):1156-65. PubMed ID: 20518850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocellular bile salt transport: lessons from cholestasis.
    Trauner M; Fickert P; Stauber RE
    Can J Gastroenterol; 2000 Nov; 14 Suppl D():99D-104D. PubMed ID: 11110621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatocellular transporters and cholestasis.
    Pauli-Magnus C; Meier PJ
    J Clin Gastroenterol; 2005 Apr; 39(4 Suppl 2):S103-10. PubMed ID: 15758645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.