These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 34294083)

  • 41. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy.
    Murugan C; Sharma V; Murugan RK; Malaimegu G; Sundaramurthy A
    J Control Release; 2019 Apr; 299():1-20. PubMed ID: 30771414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Copper chalcogenide materials as photothermal agents for cancer treatment.
    Liu K; Liu K; Liu J; Ren Q; Zhao Z; Wu X; Li D; Yuan F; Ye K; Li B
    Nanoscale; 2020 Feb; 12(5):2902-2913. PubMed ID: 31967164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.
    Kemp JA; Shim MS; Heo CY; Kwon YJ
    Adv Drug Deliv Rev; 2016 Mar; 98():3-18. PubMed ID: 26546465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer.
    Lv Z; He S; Wang Y; Zhu X
    Adv Healthc Mater; 2021 Mar; 10(6):e2001806. PubMed ID: 33470542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers.
    Ban Q; Bai T; Duan X; Kong J
    Biomater Sci; 2017 Jan; 5(2):190-210. PubMed ID: 27990534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strategies to improve the photothermal capacity of gold-based nanomedicines.
    Gonçalves ASC; Rodrigues CF; Moreira AF; Correia IJ
    Acta Biomater; 2020 Oct; 116():105-137. PubMed ID: 32911109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vanadium-based nanomaterials for cancer diagnosis and treatment.
    Hu D; Li D; Liu X; Zhou Z; Tang J; Shen Y
    Biomed Mater; 2020 Dec; 16(1):014101. PubMed ID: 33355313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery.
    Dheer D; Arora D; Jaglan S; Rawal RK; Shankar R
    J Drug Target; 2017 Jan; 25(1):1-16. PubMed ID: 27030377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanomaterials for theranostics: recent advances and future challenges.
    Lim EK; Kim T; Paik S; Haam S; Huh YM; Lee K
    Chem Rev; 2015 Jan; 115(1):327-94. PubMed ID: 25423180
    [No Abstract]   [Full Text] [Related]  

  • 50. Polydopamine-Mesoporous Silica Core-Shell Nanoparticles for Combined Photothermal Immunotherapy.
    Seth A; Gholami Derami H; Gupta P; Wang Z; Rathi P; Gupta R; Cao T; Morrissey JJ; Singamaneni S
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42499-42510. PubMed ID: 32838525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Palladium-based nanomaterials for cancer imaging and therapy.
    Liu Y; Li J; Chen M; Chen X; Zheng N
    Theranostics; 2020; 10(22):10057-10074. PubMed ID: 32929334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review.
    Wei W; Zhang X; Zhang S; Wei G; Su Z
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109891. PubMed ID: 31500035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanomaterials in combating cancer: therapeutic applications and developments.
    Nazir S; Hussain T; Ayub A; Rashid U; MacRobert AJ
    Nanomedicine; 2014 Jan; 10(1):19-34. PubMed ID: 23871761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimuli-responsive polymeric nanoparticles for nanomedicine.
    Crucho CI
    ChemMedChem; 2015 Jan; 10(1):24-38. PubMed ID: 25319803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS
    Purcell-Milton F; McKenna R; Brennan LJ; Cullen CP; Guillemeney L; Tepliakov NV; Baimuratov AS; Rukhlenko ID; Perova TS; Duesberg GS; Baranov AV; Fedorov AV; Gun'ko YK
    ACS Nano; 2018 Feb; 12(2):954-964. PubMed ID: 29338193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics.
    Huang X; Zhang W; Guan G; Song G; Zou R; Hu J
    Acc Chem Res; 2017 Oct; 50(10):2529-2538. PubMed ID: 28972736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics.
    Tan YY; Yap PK; Xin Lim GL; Mehta M; Chan Y; Ng SW; Kapoor DN; Negi P; Anand K; Singh SK; Jha NK; Lim LC; Madheswaran T; Satija S; Gupta G; Dua K; Chellappan DK
    Chem Biol Interact; 2020 Sep; 329():109221. PubMed ID: 32768398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inherent Chemotherapeutic Anti-Cancer Effects of Low-Dimensional Nanomaterials.
    Fu W; Zhou W; Chu PK; Yu XF
    Chemistry; 2019 Aug; 25(47):10995-11006. PubMed ID: 31206798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Designing highly stable ferrous selenide-black phosphorus nanosheets heteronanostructure via P-Se bond for MRI-guided photothermal therapy.
    Deng X; Liu H; Xu Y; Chan L; Xie J; Xiong Z; Tang Z; Yang F; Chen T
    J Nanobiotechnology; 2021 Jul; 19(1):201. PubMed ID: 34229725
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer - A review.
    Bagheri AR; Aramesh N; Bilal M; Xiao J; Kim HW; Yan B
    Bioorg Med Chem; 2021 Dec; 51():116493. PubMed ID: 34781082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.