These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 34294107)
1. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. Geng Y; Guan Y; Qiong L; Lu S; An M; Crabbe MJC; Qi J; Zhao F; Qiao Q; Zhang T BMC Biol; 2021 Jul; 19(1):143. PubMed ID: 34294107 [TBL] [Abstract][Full Text] [Related]
2. Genome of Zhang T; Qiao Q; Novikova PY; Wang Q; Yue J; Guan Y; Ming S; Liu T; De J; Liu Y; Al-Shehbaz IA; Sun H; Van Montagu M; Huang J; Van de Peer Y; Qiong L Proc Natl Acad Sci U S A; 2019 Apr; 116(14):7137-7146. PubMed ID: 30894495 [No Abstract] [Full Text] [Related]
3. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. Dorn KM; Fankhauser JD; Wyse DL; Marks MD DNA Res; 2015 Apr; 22(2):121-31. PubMed ID: 25632110 [TBL] [Abstract][Full Text] [Related]
4. De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Dorn KM; Fankhauser JD; Wyse DL; Marks MD Plant J; 2013 Sep; 75(6):1028-38. PubMed ID: 23786378 [TBL] [Abstract][Full Text] [Related]
5. Spring flowering habit in field pennycress ( Dorn KM; Johnson EB; Daniels EC; Wyse DL; Marks MD Plant Direct; 2018 Nov; 2(11):e00097. PubMed ID: 31245698 [TBL] [Abstract][Full Text] [Related]
6. The pennycress (Thlaspi arvense L.) nectary: structural and transcriptomic characterization. Thomas JB; Hampton ME; Dorn KM; David Marks M; Carter CJ BMC Plant Biol; 2017 Nov; 17(1):201. PubMed ID: 29137608 [TBL] [Abstract][Full Text] [Related]
7. Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Nunn A; Rodríguez-Arévalo I; Tandukar Z; Frels K; Contreras-Garrido A; Carbonell-Bejerano P; Zhang P; Ramos Cruz D; Jandrasits K; Lanz C; Brusa A; Mirouze M; Dorn K; Galbraith DW; Jarvis BA; Sedbrook JC; Wyse DL; Otto C; Langenberger D; Stadler PF; Weigel D; Marks MD; Anderson JA; Becker C; Chopra R Plant Biotechnol J; 2022 May; 20(5):944-963. PubMed ID: 34990041 [TBL] [Abstract][Full Text] [Related]
9. Rapid Genome Evolution and Adaptation of Hu Y; Wu X; Jin G; Peng J; Leng R; Li L; Gui D; Fan C; Zhang C Front Plant Sci; 2021; 12():772655. PubMed ID: 35058947 [TBL] [Abstract][Full Text] [Related]
10. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Sedbrook JC; Phippen WB; Marks MD Plant Sci; 2014 Oct; 227():122-32. PubMed ID: 25219314 [TBL] [Abstract][Full Text] [Related]
11. Spatial genetic and epigenetic structure of Thlaspi arvense (field pennycress) in China. Guan Y; Qu P; Lu S; Crabbe MJC; Zhang T; Geng Y Genes Genet Syst; 2021 Feb; 95(5):225-234. PubMed ID: 33177249 [TBL] [Abstract][Full Text] [Related]
12. Natural variation and improved genome annotation of the emerging biofuel crop field pennycress (Thlaspi arvense). García Navarrete T; Arias C; Mukundi E; Alonso AP; Grotewold E G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35416986 [TBL] [Abstract][Full Text] [Related]
13. Population transcriptomics uncover the relative roles of positive selection and differential expression in Batrachium bungei adaptation to the Qinghai-Tibetan plateau. Yu X; Wei P; Zhao S; Chen Z; Li X; Zhang W; Liu C; Yang Y; Li X; Liu X Plant Cell Rep; 2023 May; 42(5):879-893. PubMed ID: 36973418 [TBL] [Abstract][Full Text] [Related]
15. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. McGinn M; Phippen WB; Chopra R; Bansal S; Jarvis BA; Phippen ME; Dorn KM; Esfahanian M; Nazarenus TJ; Cahoon EB; Durrett TP; Marks MD; Sedbrook JC Plant Biotechnol J; 2019 Apr; 17(4):776-788. PubMed ID: 30230695 [TBL] [Abstract][Full Text] [Related]
16. Technologies enabling rapid crop improvements for sustainable agriculture: example pennycress (Thlaspi arvense L.). Marks MD; Chopra R; Sedbrook JC Emerg Top Life Sci; 2021 May; 5(2):325-335. PubMed ID: 33755137 [TBL] [Abstract][Full Text] [Related]
17. Translational genomics using Arabidopsis as a model enables the characterization of pennycress genes through forward and reverse genetics. Chopra R; Johnson EB; Daniels E; McGinn M; Dorn KM; Esfahanian M; Folstad N; Amundson K; Altendorf K; Betts K; Frels K; Anderson JA; Wyse DL; Sedbrook JC; David Marks M Plant J; 2018 Dec; 96(6):1093-1105. PubMed ID: 30394623 [TBL] [Abstract][Full Text] [Related]
18. Research progress on the development of pennycress ( Ma J; Wang H; Zhang Y Front Plant Sci; 2023; 14():1268085. PubMed ID: 38093994 [TBL] [Abstract][Full Text] [Related]
19. Genomic Variation, Population History, and Long-Term Genetic Adaptation to High Altitudes in Tibetan Partridge (Perdix hodgsoniae). Palacios C; Wang P; Wang N; Brown MA; Capatosto L; Du J; Jiang J; Zhang Q; Dahal N; Lamichhaney S Mol Biol Evol; 2023 Oct; 40(10):. PubMed ID: 37768198 [TBL] [Abstract][Full Text] [Related]
20. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.). Claver A; Rey R; López MV; Picorel R; Alfonso M J Plant Physiol; 2017 Jan; 208():7-16. PubMed ID: 27889523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]