These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34294462)

  • 1. Robust control of a cable-driven rehabilitation robot for lower and upper limbs.
    Seyfi NS; Keymasi Khalaji A
    ISA Trans; 2022 Jun; 125():268-289. PubMed ID: 34294462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Adaptive Control of Fully Constrained Cable-Driven Serial Manipulator with Multi-Segment Cables Using Cable Tension Sensor Measurements.
    Lou Y; Lin H; Quan P; Wei D; Di S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33669150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer.
    Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A
    ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel robust control of a 7-DOF exoskeleton robot.
    Rahmani M; Rahman MH
    PLoS One; 2018; 13(9):e0203440. PubMed ID: 30192815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb.
    Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cable failure tolerant control and planning in a planar reconfigurable cable driven parallel robot.
    Raman A; Walker I; Krovi V; Schmid M
    Front Robot AI; 2023; 10():1070627. PubMed ID: 37265744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and Qualitative Evaluation of Exoskeleton Transparency Controllers for Upper-Limb Neurorehabilitation.
    Gasperina SD; Ratschat AL; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper.
    Zhu J; Hu H; Zhao W; Yang J; Ouyang Q
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and control of a bedside cable-driven lower-limb rehabilitation robot for bedridden individuals.
    Wang D; Li J; Jian Z; Su H; Wang H; Fang F
    Front Bioeng Biotechnol; 2023; 11():1321905. PubMed ID: 38076420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional order PID for tracking control of a parallel robotic manipulator type delta.
    Angel L; Viola J
    ISA Trans; 2018 Aug; 79():172-188. PubMed ID: 29793737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collision avoidance analysis of human-robot physical interaction based on null-space impedance control of a dynamic reference arm plane.
    Sun Q; Guo S; Fei S
    Med Biol Eng Comput; 2023 Aug; 61(8):2077-2090. PubMed ID: 37326802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.