These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34294698)

  • 21. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles.
    Chen Z; Tsytsarev V; Finfrock YZ; Antipova OA; Cai Z; Arakawa H; Lischka FW; Hooks BM; Wilton R; Wang D; Liu Y; Gaitan B; Tao Y; Chen Y; Erzurumlu RS; Yang H; Rozhkova EA
    ACS Nano; 2021 Mar; 15(3):5201-5208. PubMed ID: 33625219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics.
    McCall JG; Qazi R; Shin G; Li S; Ikram MH; Jang KI; Liu Y; Al-Hasani R; Bruchas MR; Jeong JW; Rogers JA
    Nat Protoc; 2017 Feb; 12(2):219-237. PubMed ID: 28055036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution chemical imaging through tissue with an X-ray scintillator sensor.
    Chen H; Patrick AL; Yang Z; VanDerveer DG; Anker JN
    Anal Chem; 2011 Jul; 83(13):5045-9. PubMed ID: 21619005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation.
    Qazi R; Gomez AM; Castro DC; Zou Z; Sim JY; Xiong Y; Abdo J; Kim CY; Anderson A; Lohner F; Byun SH; Chul Lee B; Jang KI; Xiao J; Bruchas MR; Jeong JW
    Nat Biomed Eng; 2019 Aug; 3(8):655-669. PubMed ID: 31384010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
    Kim TI; McCall JG; Jung YH; Huang X; Siuda ER; Li Y; Song J; Song YM; Pao HA; Kim RH; Lu C; Lee SD; Song IS; Shin G; Al-Hasani R; Kim S; Tan MP; Huang Y; Omenetto FG; Rogers JA; Bruchas MR
    Science; 2013 Apr; 340(6129):211-6. PubMed ID: 23580530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain.
    Lu L; Gutruf P; Xia L; Bhatti DL; Wang X; Vazquez-Guardado A; Ning X; Shen X; Sang T; Ma R; Pakeltis G; Sobczak G; Zhang H; Seo DO; Xue M; Yin L; Chanda D; Sheng X; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1374-E1383. PubMed ID: 29378934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics.
    Park SI; Shin G; Banks A; McCall JG; Siuda ER; Schmidt MJ; Chung HU; Noh KN; Mun JG; Rhodes J; Bruchas MR; Rogers JA
    J Neural Eng; 2015 Oct; 12(5):056002-56002. PubMed ID: 26193450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators.
    Howansky A; Peng B; Lubinsky AR; Zhao W
    Med Phys; 2017 Mar; 44(3):847-860. PubMed ID: 28039881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcranial deep-tissue phototherapy for Alzheimer's disease using low-dose X-ray-activated long-afterglow scintillators.
    Ma M; Wang J; Jiang H; Chen Q; Xiao Y; Yang H; Lin L
    Acta Biomater; 2023 Jan; 155():635-643. PubMed ID: 36328129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce
    Mares JA; Gorbenko V; Kucerkova R; Prusa P; Beitlerova A; Zorenko T; Pokorny M; Witkiewicz-Łukaszek S; Syrotych Y; D'Ambrosio C; Nikl M; Sidletskiy O; Zorenko Y
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 37. Remote Optogenetics Using Up/Down-Conversion Phosphors.
    Matsubara T; Yamashita T
    Front Mol Biosci; 2021; 8():771717. PubMed ID: 34805279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rare-Earth-Doped Calcium Carbonate Exposed to X-ray Irradiation to Induce Reactive Oxygen Species for Tumor Treatment.
    Yang CC; Wang WY; Lin FH; Hou CH
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30845750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic phosphorescent scintillation from copolymers by X-ray irradiation.
    Gan N; Zou X; Dong M; Wang Y; Wang X; Lv A; Song Z; Zhang Y; Gong W; Zhao Z; Wang Z; Zhou Z; Ma H; Liu X; Chen Q; Shi H; Yang H; Gu L; An Z; Huang W
    Nat Commun; 2022 Jul; 13(1):3995. PubMed ID: 35810179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-proportionality study of CaMoO4 and GAGG:Ce scintillation crystals using Compton coincidence technique.
    Kaewkhao J; Limkitjaroenporn P; Chaiphaksa W; Kim HJ
    Appl Radiat Isot; 2016 Sep; 115():221-226. PubMed ID: 27423926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.