These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34294737)

  • 1. Powered flight in hatchling pterosaurs: evidence from wing form and bone strength.
    Naish D; Witton MP; Martin-Silverstone E
    Sci Rep; 2021 Jul; 11(1):13130. PubMed ID: 34294737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness.
    Witton MP; Habib MB
    PLoS One; 2010 Nov; 5(11):e13982. PubMed ID: 21085624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight in slow motion: aerodynamics of the pterosaur wing.
    Palmer C
    Proc Biol Sci; 2011 Jun; 278(1713):1881-5. PubMed ID: 21106584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the pterosaur got its wings.
    Tokita M
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1163-78. PubMed ID: 25361444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraints on the wing morphology of pterosaurs.
    Palmer C; Dyke G
    Proc Biol Sci; 2012 Mar; 279(1731):1218-24. PubMed ID: 21957137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of the unique pterosaur pteroid.
    Palmer C; Dyke GJ
    Proc Biol Sci; 2010 Apr; 277(1684):1121-7. PubMed ID: 20007183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allometric wing growth links parental care to pterosaur giantism.
    Yang Z; Jiang B; Benton MJ; Xu X; McNamara ME; Hone DWE
    Proc Biol Sci; 2023 Jul; 290(2003):20231102. PubMed ID: 37464754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a rare pterosaur bone bed in a cretaceous desert with insights on ontogeny and behavior of flying reptiles.
    Manzig PC; Kellner AW; Weinschütz LC; Fragoso CE; Vega CS; Guimarães GB; Godoy LC; Liccardo A; Ricetti JH; de Moura CC
    PLoS One; 2014; 9(8):e100005. PubMed ID: 25118592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental growth patterns of the filter-feeder pterosaur, Pterodaustro guiñazui.
    Chinsamy A; Codorniú L; Chiappe L
    Biol Lett; 2008 Jun; 4(3):282-5. PubMed ID: 18308672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air space proportion in pterosaur limb bones using computed tomography and its implications for previous estimates of pneumaticity.
    Martin EG; Palmer C
    PLoS One; 2014; 9(5):e97159. PubMed ID: 24817312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High lift function of the pteroid bone and forewing of pterosaurs.
    Wilkinson MT; Unwin DM; Ellington CP
    Proc Biol Sci; 2006 Jan; 273(1582):119-26. PubMed ID: 16519243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pterosaurs evolved a muscular wing-body junction providing multifaceted flight performance benefits: Advanced aerodynamic smoothing, sophisticated wing root control, and wing force generation.
    Pittman M; Barlow LA; Kaye TG; Habib MB
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34663691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limb disparity and wing shape in pterosaurs.
    Dyke GJ; Nudds RL; Rayner JM
    J Evol Biol; 2006 Jul; 19(4):1339-42. PubMed ID: 16780534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.
    Claessens LP; O'Connor PM; Unwin DM
    PLoS One; 2009; 4(2):e4497. PubMed ID: 19223979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies.
    Prondvai E; Stein K; Osi A; Sander MP
    PLoS One; 2012; 7(2):e31392. PubMed ID: 22355361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sailing the skies: the improbable aeronautical success of the pterosaurs.
    Wilkinson MT
    J Exp Biol; 2007 May; 210(Pt 10):1663-71. PubMed ID: 17488930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 150 million years of sustained increase in pterosaur flight efficiency.
    Venditti C; Baker J; Benton MJ; Meade A; Humphries S
    Nature; 2020 Nov; 587(7832):83-86. PubMed ID: 33116315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphospace-based test for competitive exclusion among flying vertebrates: did birds, bats and pterosaurs get in each other's space?
    McGowan AJ; Dyke GJ
    J Evol Biol; 2007 May; 20(3):1230-6. PubMed ID: 17465933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powered-gliding/climbing flight.
    Sachs G
    J Theor Biol; 2022 Aug; 547():111146. PubMed ID: 35487281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance.
    Rader JA; Hedrick TL; He Y; Waldrop LD
    Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.