These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34294830)

  • 21. Future precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate models.
    Li H; Chen H; Wang H; Yu E
    Sci Total Environ; 2018 Nov; 640-641():543-554. PubMed ID: 29864667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in precipitation amounts and extremes across Xinjiang (northwest China) and their connection to climate indices.
    Hu W; Yao J; He Q; Chen J
    PeerJ; 2021; 9():e10792. PubMed ID: 33552744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China's Qilian Mountains.
    Lin P; He Z; Du J; Chen L; Zhu X; Li J
    Sci Rep; 2017 May; 7(1):2245. PubMed ID: 28533540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017.
    Tong S; Li X; Zhang J; Bao Y; Bao Y; Na L; Si A
    Sci Total Environ; 2019 Feb; 649():75-89. PubMed ID: 30172136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attribution and projections of temperature extreme trends in South America based on CMIP5 models.
    Rusticucci M; Zazulie N
    Ann N Y Acad Sci; 2021 Nov; 1504(1):154-166. PubMed ID: 33763891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroclimatic changes on multiple timescales since 7800 y BP in the winter precipitation-dominated Central Asia.
    Tan L; Cheng H; Li D; Orozbaev R; Li Y; Xu H; Edwards RL; Song Y; Ma L; Lin F; Sinha A; An Z
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2321645121. PubMed ID: 38527201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity.
    Chiang F; Mazdiyasni O; AghaKouchak A
    Nat Commun; 2021 May; 12(1):2754. PubMed ID: 33980822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the influence of global warming on unprecedented extreme climate events.
    Diffenbaugh NS; Singh D; Mankin JS; Horton DE; Swain DL; Touma D; Charland A; Liu Y; Haugen M; Tsiang M; Rajaratnam B
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4881-4886. PubMed ID: 28439005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets.
    Madakumbura GD; Thackeray CW; Norris J; Goldenson N; Hall A
    Nat Commun; 2021 Jul; 12(1):3944. PubMed ID: 34230465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Annual and Seasonal Precipitation Variation in the Qinba Mountain area, China.
    Zhang Y; Liang C
    Sci Rep; 2020 Jan; 10(1):961. PubMed ID: 31969595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Western disturbances alter the trend of winter precipitation and its extremes over Northwest Himalayas: Kashmir Himalaya.
    Dar J
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):83439-83451. PubMed ID: 37344715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atmospheric warming and the amplification of precipitation extremes.
    Allan RP; Soden BJ
    Science; 2008 Sep; 321(5895):1481-4. PubMed ID: 18687921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions.
    Mahmoud SH; Gan TY
    Sci Total Environ; 2018 Aug; 633():1329-1344. PubMed ID: 29758885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global response of terrestrial gross primary productivity to climate extremes.
    Yuan M; Zhu Q; Zhang J; Liu J; Chen H; Peng C; Li P; Li M; Wang M; Zhao P
    Sci Total Environ; 2021 Jan; 750():142337. PubMed ID: 33182195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5-3.0 °C warming levels using CMIP6-GCMs.
    Mondal SK; Tao H; Huang J; Wang Y; Su B; Zhai J; Jing C; Wen S; Jiang S; Chen Z; Jiang T
    Sci Total Environ; 2021 Oct; 789():147867. PubMed ID: 34052498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trends in the consecutive days of temperature and precipitation extremes in China during 1961-2015.
    Shi J; Cui L; Wen K; Tian Z; Wei P; Zhang B
    Environ Res; 2018 Feb; 161():381-391. PubMed ID: 29197279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dominant change pattern of extreme precipitation and its potential causes in Shandong Province, China.
    Xia J; Yang XY; Liu J; Wang M; Li J
    Sci Rep; 2022 Jan; 12(1):858. PubMed ID: 35039594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering the role of meteorological parameters controlling the sediment load and water discharge in the Sutlej basin, Western Himalaya.
    Kumar P; Dubey CS; Kumar O; Shekhar S; Shukla DP; Ramanathan AL
    J Environ Manage; 2021 Nov; 298():113413. PubMed ID: 34352482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China.
    Lin L; Gao T; Luo M; Ge E; Yang Y; Liu Z; Zhao Y; Ning G
    Sci Total Environ; 2020 Nov; 744():140264. PubMed ID: 32755767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial variations in the warming trend and the transition to more severe weather in midlatitudes.
    Estrada F; Kim D; Perron P
    Sci Rep; 2021 Jan; 11(1):145. PubMed ID: 33420406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.