BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34294849)

  • 1. Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer.
    Kaku T; Sugiura K; Entani T; Osabe K; Nagai T
    Sci Rep; 2021 Jul; 11(1):14994. PubMed ID: 34294849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria.
    Craney A; Hohenauer T; Xu Y; Navani NK; Li Y; Nodwell J
    Nucleic Acids Res; 2007; 35(6):e46. PubMed ID: 17337439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insights into the Bacterial Luciferase-based Bioluminescence Resonance Energy Transfer Luminescence: The Role of Protein Complex Dimer.
    Luo Y; Pi S; Liu YJ
    Chemphyschem; 2024 May; 25(9):e202300973. PubMed ID: 38345139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.
    Mo XL; Fu H
    Methods Mol Biol; 2016; 1439():263-71. PubMed ID: 27317001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongly enhanced bacterial bioluminescence with the
    Gregor C; Gwosch KC; Sahl SJ; Hell SW
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):962-967. PubMed ID: 29339494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operon structure and cotranslational subunit association direct protein assembly in bacteria.
    Shieh YW; Minguez P; Bork P; Auburger JJ; Guilbride DL; Kramer G; Bukau B
    Science; 2015 Nov; 350(6261):678-80. PubMed ID: 26405228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.
    Cui B; Wang Y; Song Y; Wang T; Li C; Wei Y; Luo ZQ; Shen X
    mBio; 2014 May; 5(3):e01050-14. PubMed ID: 24846380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.
    Xu T; Ripp S; Sayler GS; Close DM
    PLoS One; 2014; 9(5):e96347. PubMed ID: 24788811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved fluorescent protein-based expression reporter system that utilizes bioluminescence resonance energy transfer and peptide-assisted complementation.
    Kakizuka T; Takai A; Yoshizawa K; Okada Y; Watanabe TM
    Chem Commun (Camb); 2020 Mar; 56(25):3625-3628. PubMed ID: 32104841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of Bioluminescence resonance energy transfer (BRET).
    Dacres H; Michie M; Wang J; Pfleger KD; Trowell SC
    Biochem Biophys Res Commun; 2012 Aug; 425(3):625-9. PubMed ID: 22877756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
    Kobayashi H; Picard LP; Schönegge AM; Bouvier M
    Nat Protoc; 2019 Apr; 14(4):1084-1107. PubMed ID: 30911173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins.
    Xu Y; Piston DW; Johnson CH
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):151-6. PubMed ID: 9874787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound.
    Xi L; Cho KW; Tu SC
    J Bacteriol; 1991 Feb; 173(4):1399-405. PubMed ID: 1995589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.
    Branchini B
    Methods Mol Biol; 2016; 1461():101-15. PubMed ID: 27424898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring Ligand-Activated Protein-Protein Interactions Using Bioluminescent Resonance Energy Transfer (BRET) Assay.
    Coriano C; Powell E; Xu W
    Methods Mol Biol; 2016; 1473():3-15. PubMed ID: 27518618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging.
    Hoshino H; Nakajima Y; Ohmiya Y
    Nat Methods; 2007 Aug; 4(8):637-9. PubMed ID: 17618293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating protein-protein interactions in live cells using bioluminescence resonance energy transfer.
    Deriziotis P; Graham SA; Estruch SB; Fisher SE
    J Vis Exp; 2014 May; (87):. PubMed ID: 24893771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Mechanisms of Bacterial Bioluminescence.
    Brodl E; Winkler A; Macheroux P
    Comput Struct Biotechnol J; 2018; 16():551-564. PubMed ID: 30546856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds.
    Wang BJ; Liao YF; Tung YT; Yih LH; Hu CC; Lee H
    Toxicol Mech Methods; 2013 May; 23(4):247-54. PubMed ID: 23193992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo detection of protein-protein interaction in plant cells using BRET.
    Subramanian C; Xu Y; Johnson CH; von Arnim AG
    Methods Mol Biol; 2004; 284():271-86. PubMed ID: 15173623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.