These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34294914)

  • 1. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers.
    Sathe D; Zhou J; Chen H; Su HW; Xie W; Hsu TG; Schrage BR; Smith T; Ziegler CJ; Wang J
    Nat Chem; 2021 Aug; 13(8):743-750. PubMed ID: 34294914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming the Low Driving Force in Forming Depolymerizable Polymers through Monomer Isomerization.
    Chen H; Shi Z; Hsu TG; Wang J
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25493-25498. PubMed ID: 34499390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Trans-Benzocyclobutene-Fused Cyclooctene as a Monomer for Chemically Recyclable Polymer.
    Su HW; Zhou J; Yoon S; Wang J
    Chem Asian J; 2023 Feb; 18(3):e202201133. PubMed ID: 36534946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Structure-Polymerization Thermodynamics Relationships of Fused-Ring Cyclooctenes for Developing Chemically Recyclable Polymers.
    Zhou J; Sathe D; Wang J
    J Am Chem Soc; 2022 Jan; 144(2):928-934. PubMed ID: 34985870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depolymerizable Olefinic Polymers Based on Fused-Ring Cyclooctene Monomers.
    Sathe D; Zhou J; Chen H; Wang J
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36591980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating the Thermodynamics and Thermal Properties of Depolymerizable Polycyclooctenes through Substituent Effects.
    Sathe D; Chen H; Wang J
    Macromol Rapid Commun; 2023 Jan; 44(1):e2200304. PubMed ID: 35686515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance-Advantaged Stereoregular Recyclable Plastics Enabled by Aluminum-Catalytic Ring-Opening Polymerization of Dithiolactone.
    Zhu Y; Li M; Wang Y; Wang X; Tao Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302898. PubMed ID: 37058315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers.
    Wang Y; Zhu Y; Lv W; Wang X; Tao Y
    J Am Chem Soc; 2023 Jan; 145(3):1877-1885. PubMed ID: 36594572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectively Depolymerizable Polyurethanes from Unsaturated Polyols Cleavable by Olefin Metathesis.
    Jones BH; Staiger C; Powers J; Herman JA; Román-Kustas J
    Macromol Rapid Commun; 2021 Feb; 42(4):e2000571. PubMed ID: 33300207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization.
    Kariyawasam LS; Highmoore JF; Yang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303039. PubMed ID: 36988027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate.
    De Hoe GX; Şucu T; Shaver MP
    Acc Chem Res; 2022 Jun; 55(11):1514-1523. PubMed ID: 35579567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers.
    Li C; Wang L; Yan Q; Liu F; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202201407. PubMed ID: 35150037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in the Synthesis of Chemically Recyclable Polymers.
    Li XL; Ma K; Xu F; Xu TQ
    Chem Asian J; 2023 Feb; 18(3):e202201167. PubMed ID: 36623942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone.
    Li J; Liu F; Liu Y; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202207105. PubMed ID: 35674460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthogonally deconstructable and depolymerizable polysilylethers
    Johnson AM; Husted KEL; Kilgallon LJ; Johnson JA
    Chem Commun (Camb); 2022 Jul; 58(61):8496-8499. PubMed ID: 35818904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Recyclable Polymers: Ring-Opening Polymerization Enthalpy from First-Principles.
    Tran H; Toland A; Stellmach K; Paul MK; Gutekunst W; Ramprasad R
    J Phys Chem Lett; 2022 Jun; 13(21):4778-4785. PubMed ID: 35613074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior Cascade Ring-Opening/Ring-Closing Metathesis Polymerization and Multiple Olefin Metathesis Polymerization: Enhancing the Driving Force for Successful Polymerization of Challenging Monomers.
    Lee HK; Lee J; Kockelmann J; Herrmann T; Sarif M; Choi TL
    J Am Chem Soc; 2018 Aug; 140(33):10536-10545. PubMed ID: 30062884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Living Coordination Polymerization of a Six-Five Bicyclic Lactone to Produce Completely Recyclable Polyester.
    Zhu JB; Chen EY
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12558-12562. PubMed ID: 30088314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Reactive Cyclic Carbonates with a Fused Ring toward Functionalizable and Recyclable Polycarbonates.
    Zhang W; Dai J; Wu YC; Chen JX; Shan SY; Cai Z; Zhu JB
    ACS Macro Lett; 2022 Feb; 11(2):173-178. PubMed ID: 35574765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization.
    Feist JD; Lee DC; Xia Y
    Nat Chem; 2022 Jan; 14(1):53-58. PubMed ID: 34795434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.