BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 34295884)

  • 1.
    Li W; Fu Y; Halliday GM; Sue CM
    Front Cell Dev Biol; 2021; 9():612476. PubMed ID: 34295884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes Implicated in Familial Parkinson's Disease Provide a Dual Picture of Nigral Dopaminergic Neurodegeneration with Mitochondria Taking Center Stage.
    Franco R; Rivas-Santisteban R; Navarro G; Pinna A; Reyes-Resina I
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease.
    Wang XL; Feng ST; Wang YT; Yuan YH; Li ZP; Chen NH; Wang ZZ; Zhang Y
    Cell Mol Neurobiol; 2022 Jul; 42(5):1321-1339. PubMed ID: 33528716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the endolysosomal system in Parkinson's disease.
    Vidyadhara DJ; Lee JE; Chandra SS
    J Neurochem; 2019 Sep; 150(5):487-506. PubMed ID: 31287913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational modification and mitochondrial function in Parkinson's disease.
    Luo S; Wang D; Zhang Z
    Front Mol Neurosci; 2023; 16():1329554. PubMed ID: 38273938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease.
    Ryan BJ; Hoek S; Fon EA; Wade-Martins R
    Trends Biochem Sci; 2015 Apr; 40(4):200-10. PubMed ID: 25757399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in CHCHD2 cause α-synuclein aggregation.
    Ikeda A; Nishioka K; Meng H; Takanashi M; Hasegawa I; Inoshita T; Shiba-Fukushima K; Li Y; Yoshino H; Mori A; Okuzumi A; Yamaguchi A; Nonaka R; Izawa N; Ishikawa KI; Saiki H; Morita M; Hasegawa M; Hasegawa K; Elahi M; Funayama M; Okano H; Akamatsu W; Imai Y; Hattori N
    Hum Mol Genet; 2019 Dec; 28(23):3895-3911. PubMed ID: 31600778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson's disease.
    Mani S; Sevanan M; Krishnamoorthy A; Sekar S
    Neurol Sci; 2021 Nov; 42(11):4459-4469. PubMed ID: 34480241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy and Parkinson's Disease.
    Lu J; Wu M; Yue Z
    Adv Exp Med Biol; 2020; 1207():21-51. PubMed ID: 32671737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease.
    Lin TK; Liou CW; Chen SD; Chuang YC; Tiao MM; Wang PW; Chen JB; Chuang JH
    Chang Gung Med J; 2009; 32(6):589-99. PubMed ID: 20035637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic landscape of Parkinson's disease.
    Lunati A; Lesage S; Brice A
    Rev Neurol (Paris); 2018 Nov; 174(9):628-643. PubMed ID: 30245141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease.
    Cooper JF; Spielbauer KK; Senchuk MM; Nadarajan S; Colaiácovo MP; Van Raamsdonk JM
    Exp Neurol; 2018 Dec; 310():58-69. PubMed ID: 30194957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease.
    Hou X; Fiesel FC; Truban D; Castanedes Casey M; Lin WL; Soto AI; Tacik P; Rousseau LG; Diehl NN; Heckman MG; Lorenzo-Betancor O; Ferrer I; Arbelo JM; Steele JC; Farrer MJ; Cornejo-Olivas M; Torres L; Mata IF; Graff-Radford NR; Wszolek ZK; Ross OA; Murray ME; Dickson DW; Springer W
    Autophagy; 2018; 14(8):1404-1418. PubMed ID: 29947276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson's disease.
    Feng ST; Wang ZZ; Yuan YH; Sun HM; Chen NH; Zhang Y
    Eur J Neurosci; 2021 May; 53(9):2946-2959. PubMed ID: 32031280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant α-Synuclein Overexpression Induces Stressless Pacemaking in Vagal Motoneurons at Risk in Parkinson's Disease.
    Lasser-Katz E; Simchovitz A; Chiu WH; Oertel WH; Sharon R; Soreq H; Roeper J; Goldberg JA
    J Neurosci; 2017 Jan; 37(1):47-57. PubMed ID: 28053029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress factors in Parkinson's disease.
    Dorszewska J; Kowalska M; Prendecki M; Piekut T; Kozłowska J; Kozubski W
    Neural Regen Res; 2021 Jul; 16(7):1383-1391. PubMed ID: 33318422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease?
    O'Hara DM; Pawar G; Kalia SK; Kalia LV
    Front Neurosci; 2020; 14():577. PubMed ID: 32625052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autosomal dominant Parkinson's disease.
    Sundal C; Fujioka S; Uitti RJ; Wszolek ZK
    Parkinsonism Relat Disord; 2012 Jan; 18 Suppl 1():S7-10. PubMed ID: 22166459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.