These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 34296319)

  • 1. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune.
    Dufrançais O; Mascarau R; Poincloux R; Maridonneau-Parini I; Raynaud-Messina B; Vérollet C
    Cell Mol Life Sci; 2021 Sep; 78(17-18):6087-6104. PubMed ID: 34296319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells.
    Balabiyev A; Podolnikova NP; Mursalimov A; Lowry D; Newbern JM; Roberson RW; Ugarova TP
    Mol Biol Cell; 2020 Aug; 31(18):2002-2020. PubMed ID: 32579434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common signalling pathways in macrophage and osteoclast multinucleation.
    Pereira M; Petretto E; Gordon S; Bassett JHD; Williams GR; Behmoaras J
    J Cell Sci; 2018 Jun; 131(11):. PubMed ID: 29871956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocyte-Macrophage Lineage Cell Fusion.
    Kloc M; Subuddhi A; Uosef A; Kubiak JZ; Ghobrial RM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis.
    Gambari L; Grassi F; Roseti L; Grigolo B; Desando G
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts.
    Takito J; Nakamura M; Yoda M; Tohmonda T; Uchikawa S; Horiuchi K; Toyama Y; Chiba K
    J Cell Sci; 2012 Feb; 125(Pt 3):662-72. PubMed ID: 22349694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adipoclast: a multinucleated fat-eating macrophage.
    Olona A; Mukhopadhyay S; Hateley C; Martinez FO; Gordon S; Behmoaras J
    BMC Biol; 2021 Nov; 19(1):246. PubMed ID: 34794433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mediators of macrophage fusion.
    Helming L; Gordon S
    Trends Cell Biol; 2009 Oct; 19(10):514-22. PubMed ID: 19733078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in understanding the mechanisms of osteoclast precursor fusion.
    Oursler MJ
    J Cell Biochem; 2010 Aug; 110(5):1058-62. PubMed ID: 20564220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of fusogenic glass surfaces that impart spatiotemporal control over macrophage fusion: Direct visualization of multinucleated giant cell formation.
    Faust JJ; Christenson W; Doudrick K; Ros R; Ugarova TP
    Biomaterials; 2017 Jun; 128():160-171. PubMed ID: 28340410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multinucleation resets human macrophages for specialized functions at the expense of their identity.
    Ahmadzadeh K; Pereira M; Vanoppen M; Bernaerts E; Ko JH; Mitera T; Maksoudian C; Manshian BB; Soenen S; Rose CD; Matthys P; Wouters C; Behmoaras J
    EMBO Rep; 2023 Mar; 24(3):e56310. PubMed ID: 36597777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-4, but not vitamin D(3), induces monoblastic cell line UG3 to differentiate into multinucleated giant cells on osteoclast lineage.
    Kaji Y; Ikeda K; Ikeda T; Kawakami K; Sasaki K; Shindo M; Hatake K; Harada M; Motoyoshi K; Mori S; Norimatsu H; Takahara J
    J Cell Physiol; 2000 Feb; 182(2):214-21. PubMed ID: 10623885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rho-specific guanine nucleotide exchange factor Plekhg5 modulates cell polarity, adhesion, migration, and podosome organization in macrophages and osteoclasts.
    Iwatake M; Nishishita K; Okamoto K; Tsukuba T
    Exp Cell Res; 2017 Oct; 359(2):415-430. PubMed ID: 28847484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts.
    Georgess D; Mazzorana M; Terrado J; Delprat C; Chamot C; Guasch RM; Pérez-Roger I; Jurdic P; Machuca-Gayet I
    Mol Biol Cell; 2014 Feb; 25(3):380-96. PubMed ID: 24284899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Podosomes in osteoclast-like cells: structural analysis and cooperative roles of paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin alphaVbeta3.
    Pfaff M; Jurdic P
    J Cell Sci; 2001 Aug; 114(Pt 15):2775-86. PubMed ID: 11683411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo detection of tunneling nanotubes in normal and pathological osteoclastogenesis involving osteoclast fusion.
    Zhang JQ; Takahashi A; Gu JY; Zhang X; Kyumoto-Nakamura Y; Kukita A; Uehara N; Hiura H; Yamaza T; Kukita T
    Lab Invest; 2021 Dec; 101(12):1571-1584. PubMed ID: 34537825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transglutaminase activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics.
    Sun H; Kaartinen MT
    J Cell Physiol; 2018 Sep; 233(9):7497-7513. PubMed ID: 29663380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
    Takito J; Inoue S; Nakamura M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29587415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview of the Derivation and Function of Multinucleated Giant Cells and Their Role in Pathologic Processes.
    Brooks PJ; Glogauer M; McCulloch CA
    Am J Pathol; 2019 Jun; 189(6):1145-1158. PubMed ID: 30926333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRIM34 facilitates the formation of multinucleated giant cells by enhancing cell fusion and phagocytosis in epithelial cells.
    Sun D; An X; Ji B
    Exp Cell Res; 2019 Nov; 384(1):111594. PubMed ID: 31487507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.