These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34296385)

  • 21. Metal-Free Synthesis of N-Aryl Amides using Organocatalytic Ring-Opening Aminolysis of Lactones.
    Guo W; Gómez JE; Martínez-Rodríguez L; Bandeira NAG; Bo C; Kleij AW
    ChemSusChem; 2017 May; 10(9):1969-1975. PubMed ID: 28378941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides.
    Liu Z; Huang F; Wu P; Wang Q; Yu Z
    J Org Chem; 2018 May; 83(10):5731-5750. PubMed ID: 29663813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, enzyme kinetics and computational evaluation of N-(β-D-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors.
    Polyák M; Varga G; Szilágyi B; Juhász L; Docsa T; Gergely P; Begum J; Hayes JM; Somsák L
    Bioorg Med Chem; 2013 Sep; 21(18):5738-47. PubMed ID: 23938052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative.
    Hassan Tolba A; Krupička M; Chudoba J; Cibulka R
    Org Lett; 2021 Sep; 23(17):6825-6830. PubMed ID: 34424722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation.
    Lubberink M; Finnigan W; Schnepel C; Baldwin CR; Turner NJ; Flitsch SL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202205054. PubMed ID: 35595679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harnessing and engineering amide bond forming ligases for the synthesis of amides.
    Winn M; Richardson SM; Campopiano DJ; Micklefield J
    Curr Opin Chem Biol; 2020 Apr; 55():77-85. PubMed ID: 32058241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.
    Li Y; Gabriele E; Samain F; Favalli N; Sladojevich F; Scheuermann J; Neri D
    ACS Comb Sci; 2016 Aug; 18(8):438-43. PubMed ID: 27314981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid-Phase Synthesis of 1,3,4-Thiadiazole Derivatives via Desulfurative Cyclization of Thiosemicarbazide Intermediate Resin.
    Yang SJ; Choe JH; Gong YD
    ACS Comb Sci; 2016 Aug; 18(8):499-506. PubMed ID: 27362292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and biological evaluation of some 1,3,4-oxadiazole derivatives.
    Manjunatha K; Poojary B; Lobo PL; Fernandes J; Kumari NS
    Eur J Med Chem; 2010 Nov; 45(11):5225-33. PubMed ID: 20828888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper-TBAF catalyzed arylation of amines and amides with aryl trimethoxysilane.
    Lin B; Liu M; Ye Z; Ding J; Wu H; Cheng J
    Org Biomol Chem; 2009 Mar; 7(5):869-73. PubMed ID: 19225669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Report - Synthesis of new antibacterial agents encompassing tosyl, piperidine, propanamide and 1,3,4-oxadiazole functionalities.
    Sattar A; Aziz-Ur-Rehman -; Abbasi MA; Siddiqui SZ; Rasool S; Ali Shah SA
    Pak J Pharm Sci; 2020 Jul; 33(4):1697-1705. PubMed ID: 33583804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic amidation of unactivated ester derivatives mediated by trifluoroethanol.
    Caldwell N; Jamieson C; Simpson I; Watson AJ
    Chem Commun (Camb); 2015 Jun; 51(46):9495-8. PubMed ID: 25966325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides.
    Petchey M; Cuetos A; Rowlinson B; Dannevald S; Frese A; Sutton PW; Lovelock S; Lloyd RC; Fairlamb IJS; Grogan G
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11584-11588. PubMed ID: 30035356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes.
    Li Y; Jia F; Li Z
    Chemistry; 2013 Jan; 19(1):82-6. PubMed ID: 23208956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amide formation in one pot from carboxylic acids and amines via carboxyl and sulfinyl mixed anhydrides.
    Zambroń BK; Dubbaka SR; Marković D; Moreno-Clavijo E; Vogel P
    Org Lett; 2013 May; 15(10):2550-3. PubMed ID: 23642170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in the Metal-Catalyzed Activation of Amide Bonds.
    Chaudhari MB; Gnanaprakasam B
    Chem Asian J; 2019 Jan; 14(1):76-93. PubMed ID: 30426696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a novel series of N-phenyl-5-[(2-phenylbenzimidazol-1-yl)methyl]-1,3,4-oxadiazol-2-amines as potent antioxidants and radical scavengers.
    Ayhan-Kilcigil G; Kuş C; Çoban T; Özdamar ED; Can-Eke B
    Arch Pharm (Weinheim); 2014 Apr; 347(4):276-82. PubMed ID: 24402862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel Pd-catalyzed N-dealkylative carbonylation of tertiary amines for the preparation of amides.
    Fang T; Gao XH; Tang RY; Zhang XG; Deng CL
    Chem Commun (Camb); 2014 Dec; 50(94):14775-7. PubMed ID: 25317723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-catalysed approaches to amide bond formation.
    Allen CL; Williams JM
    Chem Soc Rev; 2011 Jul; 40(7):3405-15. PubMed ID: 21416075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents.
    Yarmohammadi E; Beyzaei H; Aryan R; Moradi A
    Mol Divers; 2021 Nov; 25(4):2367-2378. PubMed ID: 32770458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.