These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34296385)

  • 41. Copper catalyzed coupling of aryl chlorides, bromides and iodides with amines and amides.
    Xu H; Wolf C
    Chem Commun (Camb); 2009 Apr; (13):1715-7. PubMed ID: 19294272
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Efficient, One-Pot Transamidation of 8-Aminoquinoline Amides Activated by Tertiary-Butyloxycarbonyl.
    Wu W; Yi J; Xu H; Li S; Yuan R
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cleavage of unactivated amide bonds by ammonium salt-accelerated hydrazinolysis.
    Shimizu Y; Noshita M; Mukai Y; Morimoto H; Ohshima T
    Chem Commun (Camb); 2014 Oct; 50(84):12623-5. PubMed ID: 24888986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel pyrazoline amidoxime and their 1,2,4-oxadiazole analogues: synthesis and pharmacological screening.
    Ningaiah S; Bhadraiah UK; Keshavamurthy S; Javarasetty C
    Bioorg Med Chem Lett; 2013 Aug; 23(16):4532-9. PubMed ID: 23850201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzymic amide synthesis from acylglycine and aromatic amines.
    KUNO S; MURACHI T
    Arch Biochem Biophys; 1961 Aug; 94():201-6. PubMed ID: 13755154
    [No Abstract]   [Full Text] [Related]  

  • 46. Synthesis of sterically congested 1,3,4-oxadiazole derivatives from aromatic carboxylic acids, N,N-dicyclohexylcarbodiimide and (N-isocyanimino)triphenylphosphorane.
    Nasrabadi FZ; Ramazani A; Ahmadi Y
    Mol Divers; 2011 Aug; 15(3):791-8. PubMed ID: 21424595
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO
    Wang SM; Zhao C; Zhang X; Qin HL
    Org Biomol Chem; 2019 Apr; 17(16):4087-4101. PubMed ID: 30957817
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The synthesis of sterically hindered amides.
    Schäfer G; Bode JW
    Chimia (Aarau); 2014; 68(4):252-5. PubMed ID: 24983609
    [TBL] [Abstract][Full Text] [Related]  

  • 49. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.
    Shi R; Zhang H; Lu L; Gan P; Sha Y; Zhang H; Liu Q; Beller M; Lei A
    Chem Commun (Camb); 2015 Feb; 51(15):3247-50. PubMed ID: 25610923
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of linkers in tertiary amines that mediate or catalyze 1,3,5-triazine-based amide-forming reactions.
    Kitamura M; Kawasaki F; Ogawa K; Nakanishi S; Tanaka H; Yamada K; Kunishima M
    J Org Chem; 2014 Apr; 79(8):3709-14. PubMed ID: 24650172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery and optimization of new oxadiazole substituted thiazole RORγt inverse agonists through a bioisosteric amide replacement approach.
    Steeneck C; Gege C; Kinzel O; Albers M; Kleymann G; Schlüter T; Schulz A; Xue X; Cummings MD; Fourie AM; Leonard KA; Scott B; Edwards JP; Hoffmann T; Goldberg SD
    Bioorg Med Chem Lett; 2020 Jun; 30(12):127174. PubMed ID: 32334912
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases.
    Gotor V
    Bioorg Med Chem; 1999 Oct; 7(10):2189-97. PubMed ID: 10579525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nickel-Catalyzed Decarbonylative Amination of Carboxylic Acid Esters.
    Malapit CA; Borrell M; Milbauer MW; Brigham CE; Sanford MS
    J Am Chem Soc; 2020 Apr; 142(13):5918-5923. PubMed ID: 32207616
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Umpolung amide synthesis using substoichiometric N-iodosuccinimide (NIS) and oxygen as a terminal oxidant.
    Schwieter KE; Shen B; Shackleford JP; Leighty MW; Johnston JN
    Org Lett; 2014 Sep; 16(18):4714-7. PubMed ID: 25198239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism.
    Hara R; Hirai K; Suzuki S; Kino K
    Sci Rep; 2018 Feb; 8(1):2950. PubMed ID: 29440726
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis, characterization and biological screening of N-substituted derivatives of 5-benzyl-1,3,4-oxadiazole-2yl-2"-sulfanyl acetamide.
    Siddiqui SZ; Rehman A; Abbasi MA; Abbas N; Khan KM; Ashraf M; Ejaz SA
    Pak J Pharm Sci; 2013 May; 26(3):455-63. PubMed ID: 23625417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical conversion of β-O-4 lignin linkage models through Cu-catalyzed aerobic amide bond formation.
    Zhang J; Liu Y; Chiba S; Loh TP
    Chem Commun (Camb); 2013 Dec; 49(97):11439-41. PubMed ID: 24169855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 1,2-Aryl Migration Induced by Amide C-N Bond-Formation: Reaction of Alkyl Aryl Ketones with Primary Amines Towards α,α-Diaryl β,γ-Unsaturated γ-Lactams.
    Hu R; Tao Y; Zhang X; Su W
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8425-8430. PubMed ID: 33432640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rethinking amide bond synthesis.
    Pattabiraman VR; Bode JW
    Nature; 2011 Dec; 480(7378):471-9. PubMed ID: 22193101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bimetallic reactivity. On the use of oxadiazoles as binucleating ligands.
    Incarvito C; Rheingold AL; Qin CJ; Gavrilova AL; Bosnich B
    Inorg Chem; 2001 Mar; 40(6):1386-90. PubMed ID: 11300847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.