These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34296593)

  • 1. Pyridine End-Capped Polymer to Stabilize Organic Nanoparticle Dispersions for Solar Cell Fabrication through Reversible Pyridinium Salt Formation.
    Saxena S; Marlow P; Subbiah J; Colsmann A; Wong WWH; Jones DJ
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36044-36052. PubMed ID: 34296593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-friendly fabrication of organic solar cells: electrostatic stabilization of surfactant-free organic nanoparticle dispersions by illumination.
    Marlow P; Manger F; Fischer K; Sprau C; Colsmann A
    Nanoscale; 2022 Apr; 14(14):5569-5578. PubMed ID: 35343987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions.
    Gärtner S; Christmann M; Sankaran S; Röhm H; Prinz EM; Penth F; Pütz A; Türeli AE; Penth B; Baumstümmler B; Colsmann A
    Adv Mater; 2014 Oct; 26(38):6653-7. PubMed ID: 25186115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.
    Gärtner S; Reich S; Bruns M; Czolk J; Colsmann A
    Nanoscale; 2016 Mar; 8(12):6721-7. PubMed ID: 26952692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.
    Gärtner S; Clulow AJ; Howard IA; Gilbert EP; Burn PL; Gentle IR; Colsmann A
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42986-42995. PubMed ID: 29083153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the sub-ambient gelation and shearing of solutions of P3HT and P3HT blends towards active layer formation in bulk heterojunction organic solar cells.
    Quan L; Lee SS; Kalyon DM
    Soft Matter; 2021 Feb; 17(6):1642-1654. PubMed ID: 33367403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Efficiency Improvement in Organic Solar Cells Based on a Poly(3-hexylthiophene) Donor and an Indene-C60 Bisadduct Acceptor with Additional Donor Nanowires.
    Joe SY; Yim JH; Ryu SY; Ha NY; Ahn YH; Park JY; Lee S
    Chemphyschem; 2015 Apr; 16(6):1217-22. PubMed ID: 25760990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfonated Thiophene Derivative Stabilized Aqueous Poly(3-hexylthiophene):Phenyl-C
    Subianto S; Balu R; de Campo L; Sokolova A; Dutta NK; Choudhury NR
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44116-44125. PubMed ID: 30474957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Low Open-Circuit Voltage in Surfactant-Stabilized Organic-Nanoparticle-Based Solar Cells.
    Gehan TS; Ellis CLC; Venkataraman D; Bag M
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8183-8188. PubMed ID: 31997637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous dispersions of colloidal poly(3-hexylthiophene) gel particles with high internal porosity.
    Richards JJ; Weigandt KM; Pozzo DC
    J Colloid Interface Sci; 2011 Dec; 364(2):341-50. PubMed ID: 21925674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.
    Kumar N; Dutta V
    J Colloid Interface Sci; 2014 Nov; 434():181-7. PubMed ID: 25203909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the solubility of organic semiconductors for solution-processable electronics on the structure formation: a real-time study of morphology and electrical properties.
    Radchenko ES; Anokhin DV; Gerasimov KL; Rodygin AI; Rychkov AA; Shabratova ED; Grigorian S; Ivanov DA
    Soft Matter; 2018 Mar; 14(13):2560-2566. PubMed ID: 29561034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells.
    Topp K; Borchert H; Johnen F; Tunc AV; Knipper M; von Hauff E; Parisi J; Al-Shamery K
    J Phys Chem A; 2010 Mar; 114(11):3981-9. PubMed ID: 20030383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
    Lee TH; Sue HJ; Cheng X
    Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells.
    Xie C; Tang X; Berlinghof M; Langner S; Chen S; Späth A; Li N; Fink RH; Unruh T; Brabec CJ
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23225-23234. PubMed ID: 29926724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Sb
    Mkawi EM; Al-Hadeethi Y; Bazuhair RS; Yousef AS; Shalaan E; Arkook B; Abdeldaiem AM; Almalki R; Bekyarova E
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.
    Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent.
    Yang C; Sun Y; Li X; Li C; Tong J; Li J; Zhang P; Xia Y
    Nanoscale Res Lett; 2018 Jun; 13(1):184. PubMed ID: 29926214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells.
    Bannock JH; Treat ND; Chabinyc M; Stingelin N; Heeney M; de Mello JC
    Sci Rep; 2016 Mar; 6():23651. PubMed ID: 27029994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells.
    Cheng YJ; Hsieh CH; He Y; Hsu CS; Li Y
    J Am Chem Soc; 2010 Dec; 132(49):17381-3. PubMed ID: 21090653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.