These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
830 related articles for article (PubMed ID: 34296738)
21. Nanomaterials for bioprinting: functionalization of tissue-specific bioinks. Theus AS; Ning L; Jin L; Roeder RK; Zhang J; Serpooshan V Essays Biochem; 2021 Aug; 65(3):429-439. PubMed ID: 34223619 [TBL] [Abstract][Full Text] [Related]
22. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823 [TBL] [Abstract][Full Text] [Related]
23. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Chae S; Cho DW Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520 [TBL] [Abstract][Full Text] [Related]
24. Bioinks for bioprinting using plant-derived biomaterials. Hasan MM; Ahmad A; Akter MZ; Choi YJ; Yi HG Biofabrication; 2024 Aug; 16(4):. PubMed ID: 39079554 [TBL] [Abstract][Full Text] [Related]
25. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
26. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
27. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering. Duan B Ann Biomed Eng; 2017 Jan; 45(1):195-209. PubMed ID: 27066785 [TBL] [Abstract][Full Text] [Related]
28. Additive manufacturing of bioactive glass biomaterials. Simorgh S; Alasvand N; Khodadadi M; Ghobadi F; Malekzadeh Kebria M; Brouki Milan P; Kargozar S; Baino F; Mobasheri A; Mozafari M Methods; 2022 Dec; 208():75-91. PubMed ID: 36334889 [TBL] [Abstract][Full Text] [Related]
29. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649 [TBL] [Abstract][Full Text] [Related]
30. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
31. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting. Dubbin K; Hori Y; Lewis KK; Heilshorn SC Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767 [TBL] [Abstract][Full Text] [Related]
32. A Review of 3-Dimensional Skin Bioprinting Techniques: Applications, Approaches, and Trends. Ishack S; Lipner SR Dermatol Surg; 2020 Dec; 46(12):1500-1505. PubMed ID: 32205755 [TBL] [Abstract][Full Text] [Related]
33. Organ Bioprinting: Are We There Yet? Gao G; Huang Y; Schilling AF; Hubbell K; Cui X Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193879 [TBL] [Abstract][Full Text] [Related]
34. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862 [TBL] [Abstract][Full Text] [Related]
35. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration. Liang R; Gu Y; Wu Y; Bunpetch V; Zhang S ACS Biomater Sci Eng; 2021 Mar; 7(3):806-816. PubMed ID: 33715367 [TBL] [Abstract][Full Text] [Related]
36. 'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art. Kyle S; Jessop ZM; Al-Sabah A; Whitaker IS Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28558161 [TBL] [Abstract][Full Text] [Related]
37. Development and Characterization of Complementary Polymer Network Bioinks for 3D Bioprinting of Soft Tissue Constructs. Song S; Li Y; Huang J; Zhang Z Macromol Biosci; 2022 Sep; 22(9):e2200181. PubMed ID: 35778775 [TBL] [Abstract][Full Text] [Related]
38. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
39. 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Rastin H; Zhang B; Mazinani A; Hassan K; Bi J; Tung TT; Losic D Nanoscale; 2020 Aug; 12(30):16069-16080. PubMed ID: 32579663 [TBL] [Abstract][Full Text] [Related]
40. [The application of 3D bioprinting in ophthalmology]. Dong BR; Zhou XB; Tao H Zhonghua Yan Ke Za Zhi; 2023 Dec; 59(12):1065-1068. PubMed ID: 38061909 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]