These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 34296807)
1. Messinian bottom-grown selenitic gypsum: An archive of microbial life. Natalicchio M; Birgel D; Dela Pierre F; Ziegenbalg S; Hoffmann-Sell L; Gier S; Peckmann J Geobiology; 2022 Jan; 20(1):3-21. PubMed ID: 34296807 [TBL] [Abstract][Full Text] [Related]
2. Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Allwood AC; Burch IW; Rouchy JM; Coleman M Astrobiology; 2013 Sep; 13(9):870-86. PubMed ID: 24047112 [TBL] [Abstract][Full Text] [Related]
3. Carbon isotopic composition of lipid biomarkers from an endoevaporitic gypsum crust microbial mat reveals cycling of mineralized organic carbon. Jahnke LL; Des Marais DJ Geobiology; 2019 Nov; 17(6):643-659. PubMed ID: 31361088 [TBL] [Abstract][Full Text] [Related]
4. Origin and modern microbial ecology of secondary mineral deposits in Lehman Caves, Great Basin National Park, NV, USA. Havlena ZE; Hose LD; DuChene HR; Baker GM; Powell JD; Labrado AL; Brunner B; Jones DS Geobiology; 2024; 22(3):e12594. PubMed ID: 38700397 [TBL] [Abstract][Full Text] [Related]
5. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed. Kenig F; Damsté JS; Frewin NL; Hayes JM; De Leeuw JW Org Geochem; 1995 Jun; 23(6):485-526. PubMed ID: 11539140 [TBL] [Abstract][Full Text] [Related]
6. Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing. Lin YS; Lipp JS; Elvert M; Holler T; Hinrichs KU Environ Microbiol; 2013 May; 15(5):1634-46. PubMed ID: 23033882 [TBL] [Abstract][Full Text] [Related]
7. Constraining the formation of authigenic carbonates in a seepage-affected cold-water coral mound by lipid biomarkers. Feenstra EJ; Birgel D; Heindel K; Wehrmann LM; Jaramillo-Vogel D; Grobéty B; Frank N; Hancock LG; Van Rooij D; Peckmann J; Foubert A Geobiology; 2020 Mar; 18(2):185-206. PubMed ID: 32011795 [TBL] [Abstract][Full Text] [Related]
8. Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Panieri G; Lugli S; Manzi V; Roveri M; Schreiber BC; Palinska KA Geobiology; 2010 Mar; 8(2):101-11. PubMed ID: 20059556 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive molecular-isotopic characterization of archaeal lipids in the Black Sea water column and underlying sediments. Zhu QZ; Elvert M; Meador TB; Schröder JM; Doeana KD; Becker KW; Elling FJ; Lipp JS; Heuer VB; Zabel M; Hinrichs KU Geobiology; 2024; 22(2):e12589. PubMed ID: 38465505 [TBL] [Abstract][Full Text] [Related]
10. Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Schopf JW; Farmer JD; Foster IS; Kudryavtsev AB; Gallardo VA; Espinoza C Astrobiology; 2012 Jul; 12(7):619-33. PubMed ID: 22794252 [TBL] [Abstract][Full Text] [Related]
11. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Vogel MB; Des Marais DJ; Turk KA; Parenteau MN; Jahnke LL; Kubo MD Astrobiology; 2009 Nov; 9(9):875-93. PubMed ID: 19968464 [TBL] [Abstract][Full Text] [Related]
12. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783 [TBL] [Abstract][Full Text] [Related]
13. Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids. Lin YS; Lipp JS; Yoshinaga MY; Lin SH; Elvert M; Hinrichs KU Rapid Commun Mass Spectrom; 2010 Oct; 24(19):2817-26. PubMed ID: 20857440 [TBL] [Abstract][Full Text] [Related]
14. Glycerol monoalkanediol diethers: a novel series of archaeal lipids detected in hydrothermal environments. Bauersachs T; Schwark L Rapid Commun Mass Spectrom; 2016 Jan; 30(1):54-60. PubMed ID: 26661970 [TBL] [Abstract][Full Text] [Related]
15. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. Sollai M; Villanueva L; Hopmans EC; Reichart GJ; Sinninghe Damsté JS Geobiology; 2019 Jan; 17(1):91-109. PubMed ID: 30281902 [TBL] [Abstract][Full Text] [Related]
16. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. Schneider D; Arp G; Reimer A; Reitner J; Daniel R PLoS One; 2013; 8(6):e66662. PubMed ID: 23762495 [TBL] [Abstract][Full Text] [Related]
17. Impact of paleoclimate on the distribution of microbial communities in the subsurface sediment of the Dead Sea. Thomas C; Ionescu D; Ariztegui D; Geobiology; 2015 Nov; 13(6):546-61. PubMed ID: 26202605 [TBL] [Abstract][Full Text] [Related]
18. Potential Fossilized Sulfide-Oxidizing Bacteria in the Upper Miocene Sulfur-Bearing Limestones From the Lorca Basin (SE Spain): Paleoenvironmental Implications. Andreetto F; Dela Pierre F; Gibert L; Natalicchio M; Ferrando S Front Microbiol; 2019; 10():1031. PubMed ID: 31164872 [TBL] [Abstract][Full Text] [Related]
19. Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin). Lengger SK; Hopmans EC; Sinninghe Damsté JS; Schouten S Geobiology; 2014 May; 12(3):212-20. PubMed ID: 24612345 [TBL] [Abstract][Full Text] [Related]