These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34297159)

  • 21. Beyond ibrutinib: novel BTK inhibitors for the treatment of chronic lymphocytic leukemia.
    Perutelli F; Montalbano MC; Boccellato E; Coscia M; Vitale C
    Curr Opin Oncol; 2022 Nov; 34(6):757-767. PubMed ID: 35993294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening and monitoring of the BTK
    Bödör C; Kotmayer L; László T; Takács F; Barna G; Kiss R; Sebestyén E; Nagy T; Hegyi LL; Mikala G; Fekete S; Farkas P; Balogh A; Masszi T; Demeter J; Weisinger J; Alizadeh H; Kajtár B; Kohl Z; Szász R; Gergely L; Gurbity Pálfi T; Sulák A; Kollár B; Egyed M; Plander M; Rejtő L; Szerafin L; Ilonczai P; Tamáska P; Pettendi P; Lévai D; Schneider T; Sebestyén A; Csermely P; Matolcsy A; Mátrai Z; Alpár D
    Br J Haematol; 2021 Jul; 194(2):355-364. PubMed ID: 34019713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in Em-TCL1 mice.
    Hanna BS; Yazdanparast H; Demerdash Y; Roessner PM; Schulz R; Lichter P; Stilgenbauer S; Seiffert M
    Haematologica; 2021 Apr; 106(4):968-977. PubMed ID: 32139435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. p66Shc deficiency enhances CXCR4 and CCR7 recycling in CLL B cells by facilitating their dephosphorylation-dependent release from β-arrestin at early endosomes.
    Patrussi L; Capitani N; Cattaneo F; Manganaro N; Gamberucci A; Frezzato F; Martini V; Visentin A; Pelicci PG; D'Elios MM; Trentin L; Semenzato G; Baldari CT
    Oncogene; 2018 Mar; 37(11):1534-1550. PubMed ID: 29326436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Duvelisib Eliminates CLL B Cells, Impairs CLL-Supporting Cells, and Overcomes Ibrutinib Resistance in a Xenograft Model.
    Chen SS; Barrientos JC; Ferrer G; King-Richards M; Chen YJ; Ravichandran P; Ibrahim M; Kieso Y; Waters S; Kutok JL; Peluso M; Sharma S; Weaver DT; Pachter JA; Rai KR; Chiorazzi N
    Clin Cancer Res; 2023 May; 29(10):1984-1995. PubMed ID: 37071496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreased NOTCH1 Activation Correlates with Response to Ibrutinib in Chronic Lymphocytic Leukemia.
    Del Papa B; Baldoni S; Dorillo E; De Falco F; Rompietti C; Cecchini D; Cantelmi MG; Sorcini D; Nogarotto M; Adamo FM; Mezzasoma F; Silva Barcelos EC; Albi E; Iacucci Ostini R; Di Tommaso A; Marra A; Montanaro G; Martelli MP; Falzetti F; Di Ianni M; Rosati E; Sportoletti P
    Clin Cancer Res; 2019 Dec; 25(24):7540-7553. PubMed ID: 31578228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Janus kinases restrain chronic lymphocytic leukemia cells in patients on ibrutinib: Results of a phase II trial.
    Spaner DE; Luo Y; Wang G; Gallagher J; Tsui H; Shi Y
    Cancer Med; 2021 Dec; 10(24):8789-8798. PubMed ID: 34791813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Acalabrutinib, A Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells.
    Patel V; Balakrishnan K; Bibikova E; Ayres M; Keating MJ; Wierda WG; Gandhi V
    Clin Cancer Res; 2017 Jul; 23(14):3734-3743. PubMed ID: 28034907
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of Ibrutinib on the IFN Response of Chronic Lymphocytic Leukemia Cells.
    Xia M; Luo TY; Shi Y; Wang G; Tsui H; Harari D; Spaner DE
    J Immunol; 2020 Nov; 205(10):2629-2639. PubMed ID: 33067379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of Protein Tyrosine Phosphatase Receptor Type γ Suppresses Mechanisms of Adhesion and Survival in Chronic Lymphocytic Leukemia Cells.
    Montresor A; Toffali L; Fumagalli L; Constantin G; Rigo A; Ferrarini I; Vinante F; Laudanna C
    J Immunol; 2021 Jul; 207(2):671-684. PubMed ID: 34162728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia.
    Patrussi L; Capitani N; Martini V; Pizzi M; Trimarco V; Frezzato F; Marino F; Semenzato G; Trentin L; Baldari CT
    Cancer Res; 2015 Oct; 75(19):4153-63. PubMed ID: 26282174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ibrutinib and venetoclax target distinct subpopulations of CLL cells: implication for residual disease eradication.
    Lu P; Wang S; Franzen CA; Venkataraman G; McClure R; Li L; Wu W; Niu N; Sukhanova M; Pei J; Baldwin DA; Nejati R; Wasik MA; Khan N; Tu Y; Gao J; Chen Y; Ma S; Larson RA; Wang YL
    Blood Cancer J; 2021 Feb; 11(2):39. PubMed ID: 33602908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preclinical activity of anti-CCR7 immunotherapy in patients with high-risk chronic lymphocytic leukemia.
    Cuesta-Mateos C; Loscertales J; Kreutzman A; Colom-Fernández B; Portero-Sáinz I; Pérez-Villar JJ; Terrón F; Muñoz-Calleja C
    Cancer Immunol Immunother; 2015 Jun; 64(6):665-76. PubMed ID: 25724841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of functional sphingosine-1 phosphate receptor-1 is reduced by B cell receptor signaling and increased by inhibition of PI3 kinase δ but not SYK or BTK in chronic lymphocytic leukemia cells.
    Till KJ; Pettitt AR; Slupsky JR
    J Immunol; 2015 Mar; 194(5):2439-46. PubMed ID: 25632006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy.
    Patel VK; Lamothe B; Ayres ML; Gay J; Cheung JP; Balakrishnan K; Ivan C; Morse J; Nelson M; Keating MJ; Wierda WG; Marszalek JR; Gandhi V
    Leukemia; 2018 Apr; 32(4):920-930. PubMed ID: 29099493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia.
    Maddocks K; Jones JA
    Semin Oncol; 2016 Apr; 43(2):251-9. PubMed ID: 27040703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ibrutinib therapy downregulates AID enzyme and proliferative fractions in chronic lymphocytic leukemia.
    Morande PE; Sivina M; Uriepero A; Seija N; Berca C; Fresia P; Landoni AI; Di Noia JM; Burger JA; Oppezzo P
    Blood; 2019 May; 133(19):2056-2068. PubMed ID: 30814061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time to Next Treatment, Health Care Resource Utilization, and Costs Associated with Ibrutinib Use Among U.S. Veterans with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Real-World Retrospective Analysis.
    Huang Q; Borra S; Li J; Wang L; Shrestha S; Sundaram M; Janjan N
    J Manag Care Spec Pharm; 2020 Oct; 26(10):1266-1275. PubMed ID: 32880204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors.
    Sharma S; Pavlasova GM; Seda V; Cerna KA; Vojackova E; Filip D; Ondrisova L; Sandova V; Kostalova L; Zeni PF; Borsky M; Oppelt J; Liskova K; Kren L; Janikova A; Pospisilova S; Fernandes SM; Shehata M; Rassenti LZ; Jaeger U; Doubek M; Davids MS; Brown JR; Mayer J; Kipps TJ; Mraz M
    Blood; 2021 May; 137(18):2481-2494. PubMed ID: 33171493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of migratory and prosurvival pathways induced by the homeostatic chemokines CCL19 and CCL21 in B-cell chronic lymphocytic leukemia.
    Cuesta-Mateos C; López-Giral S; Alfonso-Pérez M; de Soria VG; Loscertales J; Guasch-Vidal S; Beltrán AE; Zapata JM; Muñoz-Calleja C
    Exp Hematol; 2010 Sep; 38(9):756-64, 764.e1-4. PubMed ID: 20488224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.