These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34297252)
1. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness. Sharifi A; Gendernalik A; Garrity D; Bark D Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252 [TBL] [Abstract][Full Text] [Related]
2. The embryonic vertebrate heart tube is a dynamic suction pump. Forouhar AS; Liebling M; Hickerson A; Nasiraei-Moghaddam A; Tsai HJ; Hove JR; Fraser SE; Dickinson ME; Gharib M Science; 2006 May; 312(5774):751-3. PubMed ID: 16675702 [TBL] [Abstract][Full Text] [Related]
3. 4D modelling of fluid mechanics in the zebrafish embryonic heart. Foo YY; Pant S; Tay HS; Imangali N; Chen N; Winkler C; Yap CH Biomech Model Mechanobiol; 2020 Feb; 19(1):221-232. PubMed ID: 31446522 [TBL] [Abstract][Full Text] [Related]
4. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV. Bark DL; Johnson B; Garrity D; Dasi LP J Biomech; 2017 Jan; 50():50-55. PubMed ID: 27887729 [TBL] [Abstract][Full Text] [Related]
5. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart. Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790 [TBL] [Abstract][Full Text] [Related]
6. The effect of electrical conductivity of myocardium on cardiac pumping efficacy: a computational study. Yuniarti AR; Lim KM Biomed Eng Online; 2017 Jan; 16(1):11. PubMed ID: 28086779 [TBL] [Abstract][Full Text] [Related]
7. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Männer J; Wessel A; Yelbuz TM Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196 [TBL] [Abstract][Full Text] [Related]
8. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia. Jung E Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651 [TBL] [Abstract][Full Text] [Related]
9. In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development. Gendernalik A; Zebhi B; Ahuja N; Garrity D; Bark D Ann Biomed Eng; 2021 Feb; 49(2):834-845. PubMed ID: 32959136 [TBL] [Abstract][Full Text] [Related]
10. The Driving Mechanism for Unidirectional Blood Flow in the Tubular Embryonic Heart. Kozlovsky P; Bryson-Richardson RJ; Jaffa AJ; Rosenfeld M; Elad D Ann Biomed Eng; 2016 Oct; 44(10):3069-3083. PubMed ID: 27112782 [TBL] [Abstract][Full Text] [Related]
11. Effects of extended pharmacological disruption of zebrafish embryonic heart biomechanical environment on cardiac function, morphology, and gene expression. Foo YY; Motakis E; Tiang Z; Shen S; Lai JKH; Chan WX; Wiputra H; Chen N; Chen CK; Winkler C; Foo RSY; Yap CH Dev Dyn; 2021 Dec; 250(12):1759-1777. PubMed ID: 34056790 [TBL] [Abstract][Full Text] [Related]
12. Fluid dynamics of ventricular filling in the embryonic heart. Miller LA Cell Biochem Biophys; 2011 Sep; 61(1):33-45. PubMed ID: 21336589 [TBL] [Abstract][Full Text] [Related]
13. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. Taber LA; Zhang J; Perucchio R J Biomech Eng; 2007 Jun; 129(3):441-9. PubMed ID: 17536912 [TBL] [Abstract][Full Text] [Related]
14. Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart. Wang S; Larina I J Biomed Opt; 2020 Aug; 25(8):1-19. PubMed ID: 32762173 [TBL] [Abstract][Full Text] [Related]
15. Mechanical effects of looping in the embryonic chick heart. Lin IE; Taber LA J Biomech; 1994 Mar; 27(3):311-21. PubMed ID: 8051191 [TBL] [Abstract][Full Text] [Related]
16. The Transitional Cardiac Pumping Mechanics in the Embryonic Heart. Johnson BM; Garrity DM; Dasi LP Cardiovasc Eng Technol; 2013 Sep; 4(3):246-255. PubMed ID: 29637499 [TBL] [Abstract][Full Text] [Related]
17. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart. Boselli F; Steed E; Freund JB; Vermot J Development; 2017 Dec; 144(23):4322-4327. PubMed ID: 29183943 [TBL] [Abstract][Full Text] [Related]
18. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes. Hiermeier F; Männer J J Cardiovasc Dev Dis; 2017 Nov; 4(4):. PubMed ID: 29367548 [TBL] [Abstract][Full Text] [Related]
19. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior. Muehlhausen MP; Janoske U; Oertel H Cardiovasc Eng Technol; 2015 Mar; 6(1):8-18. PubMed ID: 26577098 [TBL] [Abstract][Full Text] [Related]
20. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart. Boselli F; Vermot J Methods; 2016 Feb; 94():129-34. PubMed ID: 26390811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]