These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 34297551)
1. Assessing Marginal Land Availability Based on Land Use Change Information in the Contiguous United States. Jiang C; Guan K; Khanna M; Chen L; Peng J Environ Sci Technol; 2021 Aug; 55(15):10794-10804. PubMed ID: 34297551 [TBL] [Abstract][Full Text] [Related]
2. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries. Næss JS; Hu X; Gvein MH; Iordan CM; Cavalett O; Dorber M; Giroux B; Cherubini F J Environ Manage; 2023 Jan; 325(Pt A):116474. PubMed ID: 36274301 [TBL] [Abstract][Full Text] [Related]
3. Land availability for biofuel production. Cai X; Zhang X; Wang D Environ Sci Technol; 2011 Jan; 45(1):334-9. PubMed ID: 21142000 [TBL] [Abstract][Full Text] [Related]
4. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition. Graves RA; Pearson SM; Turner MG Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792 [TBL] [Abstract][Full Text] [Related]
5. Effects of bioenergy on biodiversity arising from land-use change and crop type. Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480 [TBL] [Abstract][Full Text] [Related]
6. An Integrated Landscape Designed for Commodity and Bioenergy Crops for a Tile-Drained Agricultural Watershed. Ssegane H; Negri MC J Environ Qual; 2016 Sep; 45(5):1588-1596. PubMed ID: 27695735 [TBL] [Abstract][Full Text] [Related]
7. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications. Popp J; Harangi-Rákos M; Gabnai Z; Balogh P; Antal G; Bai A Molecules; 2016 Feb; 21(3):285. PubMed ID: 26938514 [TBL] [Abstract][Full Text] [Related]
8. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities. Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508 [TBL] [Abstract][Full Text] [Related]
9. Historical U.S. cropland areas and the potential for bioenergy production on abandoned croplands. Zumkehr A; Campbell JE Environ Sci Technol; 2013 Apr; 47(8):3840-7. PubMed ID: 23506118 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States. Emery I; Mueller S; Qin Z; Dunn JB Environ Sci Technol; 2017 Jan; 51(1):733-741. PubMed ID: 27976872 [TBL] [Abstract][Full Text] [Related]
11. Sustainable bioenergy production from marginal lands in the US Midwest. Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409 [TBL] [Abstract][Full Text] [Related]
12. A spatial modeling framework to evaluate domestic biofuel-induced potential land use changes and emissions. Elliott J; Sharma B; Best N; Glotter M; Dunn JB; Foster I; Miguez F; Mueller S; Wang M Environ Sci Technol; 2014 Feb; 48(4):2488-96. PubMed ID: 24456539 [TBL] [Abstract][Full Text] [Related]
13. Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region. Kraatz S; Lamb BT; Hively WD; Jennewein JS; Gao F; Cosh MH; Siqueira P Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896688 [TBL] [Abstract][Full Text] [Related]
14. Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region. Ramirez-Contreras NE; Fontanilla-Díaz CA; Pardo LE; Delgado T; Munar-Florez D; Wicke B; Ruíz-Delgado J; van der Hilst F; Garcia-Nuñez JA; Mosquera-Montoya M; Faaij APC J Environ Manage; 2022 Feb; 303():114137. PubMed ID: 34847366 [TBL] [Abstract][Full Text] [Related]
15. Downgrading recent estimates of land available for biofuel production. Fritz S; See L; van der Velde M; Nalepa RA; Perger C; Schill C; McCallum I; Schepaschenko D; Kraxner F; Cai X; Zhang X; Ortner S; Hazarika R; Cipriani A; Di Bella C; Rabia AH; Garcia A; Vakolyuk M; Singha K; Beget ME; Erasmi S; Albrecht F; Shaw B; Obersteiner M Environ Sci Technol; 2013 Feb; 47(3):1688-94. PubMed ID: 23308357 [TBL] [Abstract][Full Text] [Related]
16. Biochemical production of bioenergy from agricultural crops and residue in Iran. Karimi Alavijeh M; Yaghmaei S Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716 [TBL] [Abstract][Full Text] [Related]
17. Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios. Meehan TD; Werling BP; Landis DA; Gratton C PLoS One; 2012; 7(7):e41728. PubMed ID: 22848582 [TBL] [Abstract][Full Text] [Related]
18. Biofuels on the landscape: is "land sharing" preferable to "land sparing"? Anderson-Teixeira KJ; Duval BD; Long SP; DeLucia EH Ecol Appl; 2012 Dec; 22(8):2035-48. PubMed ID: 23387108 [TBL] [Abstract][Full Text] [Related]
19. Multiple cropping systems of the world and the potential for increasing cropping intensity. Waha K; Dietrich JP; Portmann FT; Siebert S; Thornton PK; Bondeau A; Herrero M Glob Environ Change; 2020 Sep; 64():102131. PubMed ID: 33343102 [TBL] [Abstract][Full Text] [Related]
20. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland. Clarke R; Sosa A; Murphy F Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]