BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34297582)

  • 1. Chirality Nanosensor with Direct Electric Readout by Coupling of Nanofloret Localized Plasmons with Electronic Transport.
    Ziv A; Shoseyov O; Karadan P; Bloom BP; Goldring S; Metzger T; Yochelis S; Waldeck DH; Yerushalmi R; Paltiel Y
    Nano Lett; 2021 Aug; 21(15):6496-6503. PubMed ID: 34297582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplification of chiroptical activity of chiral biomolecules by surface plasmons.
    Maoz BM; Chaikin Y; Tesler AB; Bar Elli O; Fan Z; Govorov AO; Markovich G
    Nano Lett; 2013 Mar; 13(3):1203-9. PubMed ID: 23409980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding Active Device Elements at Nanowire Tips.
    No YS; Gao R; Mankin MN; Day RW; Park HG; Lieber CM
    Nano Lett; 2016 Jul; 16(7):4713-9. PubMed ID: 27337041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Near-Field Chirality in Periodic Arrays of Si Nanowires for Chiral Sensing.
    Petronijevic E; Sibilia C
    Molecules; 2019 Feb; 24(5):. PubMed ID: 30823382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires.
    Da P; Li W; Lin X; Wang Y; Tang J; Zheng G
    Anal Chem; 2014 Jul; 86(13):6633-9. PubMed ID: 24915128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiconductor-Metal Nanofloret Hybrid Structures by Self-Processing Synthesis.
    Hazut O; Waichman S; Subramani T; Sarkar D; Dash S; Roncal-Herrero T; Kröger R; Yerushalmi R
    J Am Chem Soc; 2016 Mar; 138(12):4079-86. PubMed ID: 26972888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays.
    MacKenzie R; Fraschina C; Dielacher B; Sannomiya T; Dahlin AB; Vörös J
    Nanoscale; 2013 Jun; 5(11):4966-75. PubMed ID: 23632884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broad-band high-gain room temperature photodetectors using semiconductor-metal nanofloret hybrids with wide plasmonic response.
    Ziv A; Tzaguy A; Sun Z; Yochelis S; Stratakis E; Kenanakis G; Schatz GC; Lauhon LJ; Seidman DN; Paltiel Y; Yerushalmi R
    Nanoscale; 2019 Mar; 11(13):6368-6376. PubMed ID: 30888369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic sensing of β-glucuronidase activity via silver mirror reaction on gold nanostars.
    Xianyu Y; Su S; Hu J; Yu T
    Biosens Bioelectron; 2021 Oct; 190():113430. PubMed ID: 34147947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic polymers with strong chiroptical response for sensing molecular chirality.
    Zhai D; Wang P; Wang RY; Tian X; Ji Y; Zhao W; Wang L; Wei H; Wu X; Zhang X
    Nanoscale; 2015 Jun; 7(24):10690-8. PubMed ID: 26030276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires.
    Byun KM; Yoon SJ; Kim D; Kim SJ
    Opt Lett; 2007 Jul; 32(13):1902-4. PubMed ID: 17603608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber.
    Sciacca B; Monro TM
    Langmuir; 2014 Jan; 30(3):946-54. PubMed ID: 24397817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality based sensor for bisphenol A detection.
    Xu Z; Xu L; Zhu Y; Ma W; Kuang H; Wang L; Xu C
    Chem Commun (Camb); 2012 Jun; 48(46):5760-2. PubMed ID: 22516914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Fabrication of Optical Signal Input/Output Sites on Plasmonic Nanowires.
    Toyouchi S; Wolf M; Nakao Y; Fujita Y; Inose T; Fortuni B; Hirai K; Hofkens J; De Feyter S; Hutchison J; Uji-I H
    Nano Lett; 2020 Apr; 20(4):2460-2467. PubMed ID: 32155085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.