These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34297621)

  • 1. Studying the History of Tumor Evolution from Single-Cell Sequencing Data by Exploring the Space of Binary Matrices.
    Malikić S; Mehrabadi FR; Azer ES; Ebrahimabadi MH; Sahinalp SC
    J Comput Biol; 2021 Sep; 28(9):857-879. PubMed ID: 34297621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhISCS: a combinatorial approach for subperfect tumor phylogeny reconstruction via integrative use of single-cell and bulk sequencing data.
    Malikic S; Mehrabadi FR; Ciccolella S; Rahman MK; Ricketts C; Haghshenas E; Seidman D; Hach F; Hajirasouliha I; Sahinalp SC
    Genome Res; 2019 Nov; 29(11):1860-1877. PubMed ID: 31628256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using single cell sequencing data to model the evolutionary history of a tumor.
    Kim KI; Simon R
    BMC Bioinformatics; 2014 Jan; 15():27. PubMed ID: 24460695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhyDOSE: Design of follow-up single-cell sequencing experiments of tumors.
    Weber LL; Aguse N; Chia N; El-Kebir M
    PLoS Comput Biol; 2020 Oct; 16(10):e1008240. PubMed ID: 33001973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring Trees.
    Whelan S; Morrison DA
    Methods Mol Biol; 2017; 1525():349-377. PubMed ID: 27896728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OncoNEM: inferring tumor evolution from single-cell sequencing data.
    Ross EM; Markowetz F
    Genome Biol; 2016 Apr; 17():69. PubMed ID: 27083415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
    Nguyen LT; Schmidt HA; von Haeseler A; Minh BQ
    Mol Biol Evol; 2015 Jan; 32(1):268-74. PubMed ID: 25371430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. gpps: an ILP-based approach for inferring cancer progression with mutation losses from single cell data.
    Ciccolella S; Soto Gomez M; Patterson MD; Della Vedova G; Hajirasouliha I; Bonizzoni P
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):413. PubMed ID: 33297943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper bounds on maximum likelihood for phylogenetic trees.
    Hendy MD; Holland BR
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii66-72. PubMed ID: 14534174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of mutability landscapes of tumors from single cell sequencing data.
    Tsyvina V; Zelikovsky A; Snir S; Skums P
    PLoS Comput Biol; 2020 Nov; 16(11):e1008454. PubMed ID: 33253159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree inference for single-cell data.
    Jahn K; Kuipers J; Beerenwinkel N
    Genome Biol; 2016 May; 17():86. PubMed ID: 27149953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computing tumor trees from single cells.
    Davis A; Navin NE
    Genome Biol; 2016 May; 17(1):113. PubMed ID: 27230879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RDAClone: Deciphering Tumor Heterozygosity through Single-Cell Genomics Data Analysis with Robust Deep Autoencoder.
    Xia J; Wang L; Zhang G; Zuo C; Chen L
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
    Tamura K; Peterson D; Peterson N; Stecher G; Nei M; Kumar S
    Mol Biol Evol; 2011 Oct; 28(10):2731-9. PubMed ID: 21546353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data.
    Malikic S; Jahn K; Kuipers J; Sahinalp SC; Beerenwinkel N
    Nat Commun; 2019 Jun; 10(1):2750. PubMed ID: 31227714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tree Reconstruction Game: Phylogenetic Reconstruction Using Reinforcement Learning.
    Azouri D; Granit O; Alburquerque M; Mansour Y; Pupko T; Mayrose I
    Mol Biol Evol; 2024 Jun; 41(6):. PubMed ID: 38829798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. morePhyML: improving the phylogenetic tree space exploration with PhyML 3.
    Criscuolo A
    Mol Phylogenet Evol; 2011 Dec; 61(3):944-8. PubMed ID: 21925283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter, noise, and tree topology effects in tumor phylogeny inference.
    Tomlinson K; Oesper L
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):184. PubMed ID: 31865909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the phylogenetic tree-search problem.
    Money D; Whelan S
    Syst Biol; 2012 Mar; 61(2):228-39. PubMed ID: 22076302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing tumor evolutionary histories and clone trees in polynomial-time with SubMARine.
    Sundermann LK; Wintersinger J; Rätsch G; Stoye J; Morris Q
    PLoS Comput Biol; 2021 Jan; 17(1):e1008400. PubMed ID: 33465079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.