These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34298023)

  • 1. Oxidative torrefaction performance of microalga Nannochloropsis Oceanica towards an upgraded microalgal solid biofuel.
    Zhang C; Ho SH; Chen WH; Wang R; Show PL; Ong HC
    J Biotechnol; 2021 Sep; 338():81-90. PubMed ID: 34298023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative torrefaction of microalga Nannochloropsis Oceanica activated by potassium carbonate for solid biofuel production.
    Zhang C; Li F; Ho SH; Chen WH; Gunarathne DS; Show PL
    Environ Res; 2022 Sep; 212(Pt C):113389. PubMed ID: 35561822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of water washing and KOH activation for upgrading microalgal torrefied biochar.
    Zhang C; Fang J; Chen WH; Kwon EE; Zhang Y
    Sci Total Environ; 2024 Apr; 921():171254. PubMed ID: 38408659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal Torrefaction for Solid Biofuel Production.
    Ho SH; Zhang C; Tao F; Zhang C; Chen WH
    Trends Biotechnol; 2020 Sep; 38(9):1023-1033. PubMed ID: 32818442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemical conversion of microalgal biomass into biofuels: a review.
    Chen WH; Lin BJ; Huang MY; Chang JS
    Bioresour Technol; 2015 May; 184():314-327. PubMed ID: 25479688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upgrading of banana leaf waste to produce solid biofuel by torrefaction: physicochemical properties, combustion behaviors, and potential emissions.
    Alves JLF; da Silva JCG; Sellin N; PrĂ¡ FB; Sapelini C; Souza O; Marangoni C
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25733-25747. PubMed ID: 34846654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy balance of torrefied microalgal biomass with production upscale approached by life cycle assessment.
    Rivera DRT; Ubando AT; Chen WH; Culaba AB
    J Environ Manage; 2021 Sep; 294():112992. PubMed ID: 34116302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Optimized Method for Evaluating the Preparation of High-Quality Fuel from Various Types of Biomass through Torrefaction.
    Guo S; Deng X; Zhao D; Zhu S; Qu H; Li X; Zhao Y
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1.
    Wang H; Laughinghouse HD; Anderson MA; Chen F; Willliams E; Place AR; Zmora O; Zohar Y; Zheng T; Hill RT
    Appl Environ Microbiol; 2012 Mar; 78(5):1445-53. PubMed ID: 22194289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the potential of biofuel (biochar) production from food wastes through thermal treatment.
    Rago YP; Surroop D; Mohee R
    Bioresour Technol; 2018 Jan; 248(Pt A):258-264. PubMed ID: 28684179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide.
    Bach QV; Chen WH; Sheen HK; Chang JS
    Bioresour Technol; 2017 Nov; 244(Pt 2):1393-1399. PubMed ID: 28390786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative advantages analysis of oxidative torrefaction for solid biofuel production and property upgrading.
    Zhang C; Chen WH; Ho SH; Zhang Y; Lim S
    Bioresour Technol; 2023 Oct; 386():129531. PubMed ID: 37473787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel.
    Chen WH; Huang MY; Chang JS; Chen CY; Lee WJ
    Bioresour Technol; 2015 Jun; 185():285-93. PubMed ID: 25780904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solidification characteristics of solid biofuel densified by two-step torrefaction process.
    Murakami T; Mizuno S; Sawai T
    Anal Sci; 2024 Feb; 40(2):243-248. PubMed ID: 38093142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of fuel characteristics of rice husk via torrefaction process.
    Aslam U; Ramzan N; Aslam Z; Iqbal T; Sharif S; Hasan SWU; Malik A
    Waste Manag Res; 2019 Jul; 37(7):737-745. PubMed ID: 30945613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of torrefaction on the grindability and fuel characteristics of forest biomass.
    Phanphanich M; Mani S
    Bioresour Technol; 2011 Jan; 102(2):1246-53. PubMed ID: 20801023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative torrefaction of microalgae Chlorella sorokiniana: Process optimization by central composite design.
    Felix CB; Chen WH; Chang JS; Park YK; Saeidi S; Kumar G
    Bioresour Technol; 2023 Aug; 382():129200. PubMed ID: 37211235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combustion of thermochemically torrefied sugar cane bagasse.
    Valix M; Katyal S; Cheung WH
    Bioresour Technol; 2017 Jan; 223():202-209. PubMed ID: 27792930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets.
    Wang C; Peng J; Li H; Bi XT; Legros R; Lim CJ; Sokhansanj S
    Bioresour Technol; 2013 Jan; 127():318-25. PubMed ID: 23131655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.