These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34298061)

  • 21. De novo protein design: how do we expand into the universe of possible protein structures?
    Woolfson DN; Bartlett GJ; Burton AJ; Heal JW; Niitsu A; Thomson AR; Wood CW
    Curr Opin Struct Biol; 2015 Aug; 33():16-26. PubMed ID: 26093060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in Rational Protein Engineering toward Functional Architectures and Their Applications in Food Science.
    Chen H; Ma L; Dai H; Fu Y; Wang H; Zhang Y
    J Agric Food Chem; 2022 Apr; 70(15):4522-4533. PubMed ID: 35353517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo design of self-assembling helical protein filaments.
    Shen H; Fallas JA; Lynch E; Sheffler W; Parry B; Jannetty N; Decarreau J; Wagenbach M; Vicente JJ; Chen J; Wang L; Dowling Q; Oberdorfer G; Stewart L; Wordeman L; De Yoreo J; Jacobs-Wagner C; Kollman J; Baker D
    Science; 2018 Nov; 362(6415):705-709. PubMed ID: 30409885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The coming of age of de novo protein design.
    Huang PS; Boyken SE; Baker D
    Nature; 2016 Sep; 537(7620):320-7. PubMed ID: 27629638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Principles and Methods in Computational Membrane Protein Design.
    Vorobieva AA
    J Mol Biol; 2021 Oct; 433(20):167154. PubMed ID: 34271008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.
    London N; Ambroggio X
    J Struct Biol; 2014 Feb; 185(2):136-46. PubMed ID: 23558036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A generic framework for hierarchical de novo protein design.
    Harteveld Z; Bonet J; Rosset S; Yang C; Sesterhenn F; Correia BE
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2206111119. PubMed ID: 36252041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extension of a de novo TIM barrel with a rationally designed secondary structure element.
    Wiese JG; Shanmugaratnam S; Höcker B
    Protein Sci; 2021 May; 30(5):982-989. PubMed ID: 33723882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo protein design-From new structures to programmable functions.
    Kortemme T
    Cell; 2024 Feb; 187(3):526-544. PubMed ID: 38306980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering.
    Cannon KA; Park RU; Boyken SE; Nattermann U; Yi S; Baker D; King NP; Yeates TO
    Protein Sci; 2020 Apr; 29(4):919-929. PubMed ID: 31840320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current Trends in Protein Engineering: Updates and Progress.
    Sinha R; Shukla P
    Curr Protein Pept Sci; 2019; 20(5):398-407. PubMed ID: 30451109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Principles of Protein Stability and Their Application in Computational Design.
    Goldenzweig A; Fleishman SJ
    Annu Rev Biochem; 2018 Jun; 87():105-129. PubMed ID: 29401000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beyond de novo protein design--de novo design of non-natural folded oligomers.
    Cheng RP
    Curr Opin Struct Biol; 2004 Aug; 14(4):512-20. PubMed ID: 15313247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global analysis of protein folding using massively parallel design, synthesis, and testing.
    Rocklin GJ; Chidyausiku TM; Goreshnik I; Ford A; Houliston S; Lemak A; Carter L; Ravichandran R; Mulligan VK; Chevalier A; Arrowsmith CH; Baker D
    Science; 2017 Jul; 357(6347):168-175. PubMed ID: 28706065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Principles for designing ordered protein assemblies.
    Lai YT; King NP; Yeates TO
    Trends Cell Biol; 2012 Dec; 22(12):653-61. PubMed ID: 22975357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo protein design by citizen scientists.
    Koepnick B; Flatten J; Husain T; Ford A; Silva DA; Bick MJ; Bauer A; Liu G; Ishida Y; Boykov A; Estep RD; Kleinfelter S; Nørgård-Solano T; Wei L; Players F; Montelione GT; DiMaio F; Popović Z; Khatib F; Cooper S; Baker D
    Nature; 2019 Jun; 570(7761):390-394. PubMed ID: 31168091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slow and bimolecular folding of a de novo designed monomeric protein DS119.
    Zhu C; Dai Z; Liang H; Zhang T; Gai F; Lai L
    Biophys J; 2013 Nov; 105(9):2141-8. PubMed ID: 24209859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.