BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34298250)

  • 1. Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction.
    Xu C; Alam MA; Wang Z; Peng Y; Xie C; Gong W; Yang Q; Huang S; Zhuang W; Xu J
    Bioresour Technol; 2021 Nov; 339():125578. PubMed ID: 34298250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae.
    Rech FR; Fontana RC; Rosa CA; Camassola M; Ayub MAZ; Dillon AJP
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):83-92. PubMed ID: 30264227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support.
    Chen P; Tao S; Zheng P
    Bioresour Technol; 2016 Jul; 211():406-13. PubMed ID: 27035471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel biorefining method for succinic acid processed from sugarcane bagasse.
    Chen J; Yang S; Alam MA; Wang Z; Zhang J; Huang S; Zhuang W; Xu C; Xu J
    Bioresour Technol; 2021 Mar; 324():124615. PubMed ID: 33454167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli.
    Liu R; Liang L; Li F; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 Dec; 149():84-91. PubMed ID: 24096277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process.
    de Araujo Guilherme A; Dantas PVF; Padilha CEA; Dos Santos ES; de Macedo GR
    J Environ Manage; 2019 Mar; 234():44-51. PubMed ID: 30599329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054.
    Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G
    Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis.
    Crespo CF; Badshah M; Alvarez MT; Mattiasson B
    Bioresour Technol; 2012 Jan; 103(1):186-91. PubMed ID: 22055102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes.
    Borges ER; Pereira N
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1001-11. PubMed ID: 20882312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes.
    Xi YL; Dai WY; Xu R; Zhang JH; Chen KQ; Jiang M; Wei P; Ouyang PK
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1779-85. PubMed ID: 23649828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Tolerance of Spathaspora passalidarum to Sugarcane Bagasse Hydrolysate for Ethanol Production from Xylose.
    Pacheco TF; Machado BRC; de Morais Júnior WG; Almeida JRM; Gonçalves SB
    Appl Biochem Biotechnol; 2021 Jul; 193(7):2182-2197. PubMed ID: 33682050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.
    Ko JK; Jung JH; Altpeter F; Kannan B; Kim HE; Kim KH; Alper HS; Um Y; Lee SM
    Bioresour Technol; 2018 May; 256():312-320. PubMed ID: 29455099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a β-glucosidase from Paenibacillus species and its application for succinic acid production from sugarcane bagasse hydrolysate.
    Dong W; Xue M; Zhang Y; Xin F; Wei C; Zhang W; Wu H; Ma J; Jiang M
    Bioresour Technol; 2017 Oct; 241():309-316. PubMed ID: 28577479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First- and second-generation integrated process for bioethanol production: Fermentation of molasses diluted with hemicellulose hydrolysate by recombinant Saccharomyces cerevisiae.
    de Oliveira Pereira I; Dos Santos ÂA; Guimarães NC; Lima CS; Zanella E; Matsushika A; Rabelo SC; Stambuk BU; Ienczak JL
    Biotechnol Bioeng; 2024 Apr; 121(4):1314-1324. PubMed ID: 38178588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed
    You Y; Li P; Lei F; Xing Y; Jiang J
    Biotechnol Biofuels; 2017; 10():92. PubMed ID: 28413447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae.
    Wang L; York SW; Ingram LO; Shanmugam KT
    Bioresour Technol; 2019 Feb; 273():269-276. PubMed ID: 30448678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosuccinic Acid from Lignocellulosic-Based Hexoses and Pentoses by Actinobacillus succinogenes: Characterization of the Conversion Process.
    Ferone M; Raganati F; Olivieri G; Salatino P; Marzocchella A
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1465-1477. PubMed ID: 28540516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.
    Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.