These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34298405)

  • 1. Physiological, biochemical and transcription effects of roxithromycin before and after phototransformation in Chlorella pyrenoidosa.
    Li J; Li W; Min Z; Zheng Q; Han J; Li P
    Aquat Toxicol; 2021 Jul; 238():105911. PubMed ID: 34298405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism.
    Li J; Min Z; Li W; Xu L; Han J; Li P
    Ecotoxicol Environ Saf; 2020 Mar; 191():110156. PubMed ID: 31958625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototransformation of roxithromycin in the presence of dissolved organic matter: Characteriazation of the degradation products and toxicity evaluation.
    Li W; Lyu B; Li J; Korshin GV; Zhang M; Zhang Y; Li P; Han J
    Sci Total Environ; 2020 Sep; 733():139348. PubMed ID: 32446083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined toxicity of erythromycin and roxithromycin and their removal by Chlorella pyrenoidosa.
    Liu K; Li J; Zhou Y; Li W; Cheng H; Han J
    Ecotoxicol Environ Saf; 2023 Jun; 257():114929. PubMed ID: 37084660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin.
    Guo J; Bai Y; Chen Z; Mo J; Li Q; Sun H; Zhang Q
    Ecotoxicol Environ Saf; 2020 Sep; 201():110737. PubMed ID: 32505758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of macrolide antibiotics during chlorination process: Kinetics, degradation products, and comprehensive toxicity evaluation.
    Li W; Liu K; Min Z; Li J; Zhang M; Korshin GV; Han J
    Sci Total Environ; 2023 Feb; 858(Pt 1):159800. PubMed ID: 36309261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic toxic effects of erythromycin and its photodegradation products on microalgae Chlorella pyrenoidosa.
    Li J; Li W; Liu N; Du C
    Aquat Toxicol; 2024 Jun; 271():106922. PubMed ID: 38615581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of microplastics PAN polymer and/or Cu
    Lin W; Su F; Lin M; Jin M; Li Y; Ding K; Chen Q; Qian Q; Sun X
    Environ Pollut; 2020 Oct; 265(Pt A):114985. PubMed ID: 32563949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological, biochemical and transcriptional responses of cyanobacteria to environmentally relevant concentrations of a typical antibiotic-roxithromycin.
    Xin R; Yu X; Fan J
    Sci Total Environ; 2022 Mar; 814():152703. PubMed ID: 34973318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth performance, antioxidant response, biodegradation and transcriptome analysis of Chlorella pyrenoidosa after nonylphenol exposure.
    Feng Y; Wang A; Fu W; Song D
    Sci Total Environ; 2022 Feb; 806(Pt 1):150507. PubMed ID: 34583075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus).
    Zhang S; Ding J; Razanajatovo RM; Jiang H; Zou H; Zhu W
    Sci Total Environ; 2019 Jan; 648():1431-1439. PubMed ID: 30340288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of acute toxicity response to the algae Chlorella pyrenoidosa of biosynthetic silver nanoparticles catalysts.
    Qiao Z; Guo P; Yang D; Pei Z; Wang M; Liu J; Wang Q
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10955-10968. PubMed ID: 36087185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal mechanisms of erythromycin by microalgae Chlorella pyrenoidosa and toxicity assessment during the treatment process.
    Li J; Liu K; Li W; Zhang M; Li P; Han J
    Sci Total Environ; 2022 Nov; 848():157777. PubMed ID: 35926608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of Tetracycline and Metronidazole in
    Li J; Wang Y; Fan Z; Tang P; Wu M; Xiao H; Zeng Z
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of Roxithromycin on Reproduction,Growth, and Anti-oxidation System of
    Zhang LY; Liu JC; Leng Y; Lu GH
    Huan Jing Ke Xue; 2021 Jun; 42(6):3074-3083. PubMed ID: 34032108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic degradation of a typical macrolide antibiotic roxithromycin using polypropylene fibre sheet supported N-TiO
    Yanwen Z; Feng C; Wei L; Jian Q; Liang X; Qianyu L; Yinlong Z
    Environ Technol; 2023 Sep; 44(22):3354-3366. PubMed ID: 35323102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single and combined toxicity assessment of primary or UV-aged microplastics and adsorbed organic pollutants on microalga Chlorella pyrenoidosa.
    Song W; Fu C; Fang Y; Wang Z; Li J; Zhang X; Bhatt K; Liu L; Wang N; Liu F; Zhu S
    Environ Pollut; 2023 Feb; 318():120925. PubMed ID: 36566677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic and Physiological Responses of
    Zhang Y; Chen Z; Tao Y; Wu W; Zeng Y; Liao K; Li X; Chen L
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy.
    Xiong Q; Hu LX; Liu YS; Wang TT; Ying GG
    Aquat Toxicol; 2019 Feb; 207():197-207. PubMed ID: 30584953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: kinetics, products, and toxicity assessment.
    Li W; Xu X; Lyu B; Tang Y; Zhang Y; Chen F; Korshin G
    Environ Sci Pollut Res Int; 2019 May; 26(14):14570-14582. PubMed ID: 30877533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.