BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34298535)

  • 21. Hierarchical hollow-tubular porous carbon microtubes prepared
    Xiao X; Song L; Wang Q; Wang Z; Wang H; Chu J; Liu J; Liu X; Bian Z; Zhao X
    RSC Adv; 2022 May; 12(25):16257-16266. PubMed ID: 35733697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomass-based Hierarchical Porous Carbon for Supercapacitors: Effect of Aqueous and Organic Electrolytes on the Electrochemical Performance.
    Chen Z; Wang X; Ding Z; Wei Q; Wang Z; Yang X; Qiu J
    ChemSusChem; 2019 Dec; 12(23):5099-5110. PubMed ID: 31612622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous Fe
    Yu P; Duan W; Jiang Y
    Front Chem; 2020; 8():611852. PubMed ID: 33324617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical porous carbon materials obtained by Cu-Al double hydroxide templates with high gravimetric and volumetric capacitance.
    Zhang M; Sun Y; Song R
    Nanotechnology; 2021 Mar; 32(23):. PubMed ID: 33631738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density.
    Yao L; Wu Q; Zhang P; Zhang J; Wang D; Li Y; Ren X; Mi H; Deng L; Zheng Z
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29357121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional nanoporous activated carbon electrode derived from acacia wood for high-performance supercapacitor.
    Hamouda HA; Abdu HI; Hu Q; Abubaker MA; Lei H; Cui S; Alduma AI; Peng H; Ma G; Lei Z
    Front Chem; 2022; 10():1024047. PubMed ID: 36311421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors.
    Wang Y; Duan Y; Liang X; Tang L; Sun L; Wang R; Wei S; Huang H; Yang P; Hu H
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors.
    Qiao ZJ; Chen MM; Wang CY; Yuan YC
    Bioresour Technol; 2014 Jul; 163():386-9. PubMed ID: 24851713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of Hierarchical Porous Carbon Nanoflakes for High-Performance Supercapacitors.
    Yao Y; Zhang Y; Li L; Wang S; Dou S; Liu X
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34944-34953. PubMed ID: 28920670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen and oxygen Co-doped porous carbon derived from yam waste for high-performance supercapacitors.
    Li Z; Liu Q; Sun L; Li N; Wang X; Wang Q; Zhang D; Wang B
    RSC Adv; 2021 Oct; 11(53):33208-33218. PubMed ID: 35497555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Hierarchical Porous Carbons Derived from Betelnut Shells for Supercapacitor Electrodes.
    Ariharan A; Kim SK
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical hollow tubular fibrous brucite-templated carbons obtained by KOH activation for supercapacitors.
    Liu F; Chuan X; Zhao Y
    RSC Adv; 2023 Feb; 13(10):6606-6618. PubMed ID: 36845586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soluble starch-derived porous carbon microspheres with interconnected and hierarchical structure by a low dosage KOH activation for ultrahigh rate supercapacitors.
    Guo N; Ma R; Feng P; Wang D; Zhang B; Wang L; Jia D; Li M
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130254. PubMed ID: 38368992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances.
    Zhang D; Xue Y; Chen J; Guo X; Yang D; Wang J; Zhang J; Zhang F; Yuan A
    J Nanosci Nanotechnol; 2020 May; 20(5):2728-2735. PubMed ID: 31635608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous structure engineering of N-doped carbons for enhanced mass transfer towards High-Performance supercapacitors and Li-Ion batteries.
    Fan X; Zhang W; Xu Y; Zheng J; Li Y; Fan X; Zhang F; Ji J; Peng W
    J Colloid Interface Sci; 2022 Oct; 624():51-59. PubMed ID: 35660910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nest-Like MnO
    Li X; Han D; Gong Z; Wang Z
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation.
    Li H; Shi F; An Q; Zhai S; Wang K; Tong Y
    Int J Biol Macromol; 2021 Jan; 166():923-933. PubMed ID: 33152364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen and Phosphorus Co-doped Porous Carbon for High-Performance Supercapacitors.
    Zhou J; Ye S; Zeng Q; Yang H; Chen J; Guo Z; Jiang H; Rajan K
    Front Chem; 2020; 8():105. PubMed ID: 32154218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance.
    Zhang Y; Tao B; Xing W; Zhang L; Xue Q; Yan Z
    Nanoscale; 2016 Apr; 8(15):7889-98. PubMed ID: 26660668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.