BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34298712)

  • 21. Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis.
    Hurrish KH; Su Y; Patel S; Ramage CL; Carter JL; Edwards H; Buck SA; Wiley SE; Hüttemann M; Polin L; Kushner J; Dzinic SH; White K; Bao X; Li J; Yang J; Boerner J; Hou Z; Al-Atrash G; Konoplev SN; Busquets J; Tiziani S; Matherly LH; Taub JW; Konopleva M; Ge Y; Baran N
    Res Sq; 2023 Apr; ():. PubMed ID: 37162954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis.
    Chromik J; Safferthal C; Serve H; Fulda S
    Cancer Lett; 2014 Mar; 344(1):101-109. PubMed ID: 24184825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative Phosphorylation Fueled by Fatty Acid Oxidation Sensitizes Leukemic Stem Cells to Cold.
    Griessinger E; Pereira-Martins D; Nebout M; Bosc C; Saland E; Boet E; Sahal A; Chiche J; Debayle D; Fleuriot L; Pruis M; De Mas V; Vergez F; Récher C; Huls G; Sarry JE; Schuringa JJ; Peyron JF
    Cancer Res; 2023 Aug; 83(15):2461-2470. PubMed ID: 37272750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased Expression of Micro-RNA-23a Mediates Chemoresistance to Cytarabine in Acute Myeloid Leukemia.
    Hatzl S; Perfler B; Wurm S; Uhl B; Quehenberger F; Ebner S; Troppmair J; Reinisch A; Wölfler A; Sill H; Zebisch A
    Cancers (Basel); 2020 Feb; 12(2):. PubMed ID: 32093419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anti-Tumor and Immune Enhancing Activities of Rice Bran Gramisterol on Acute Myelogenous Leukemia.
    Somintara S; Leardkamolkarn V; Suttiarporn P; Mahatheeranont S
    PLoS One; 2016; 11(1):e0146869. PubMed ID: 26752299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells.
    Kawabata KC; Zong H; Meydan C; Wyman S; Wouters BJ; Sugita M; Goswami S; Albert M; Yip W; Roboz GJ; Chen Z; Delwel R; Carroll M; Mason CE; Melnick A; Guzman ML
    Blood; 2021 Feb; 137(6):812-825. PubMed ID: 32911532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia.
    Shen W; Patnaik MM; Ruiz A; Russell SJ; Peng KW
    Blood; 2016 Mar; 127(11):1449-58. PubMed ID: 26712908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia.
    Hege Hurrish K; Qiao X; Li X; Su Y; Carter J; Ma J; Kalpage HA; Hüttemann M; Edwards H; Wang G; Kim S; Dombkowski A; Bao X; Li J; Taub JW; Ge Y
    Biochem Pharmacol; 2022 Nov; 205():115283. PubMed ID: 36208684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Metabolic Dependence on Oxidative Phosphorylation Drives Sensitivity to Metformin Treatment in
    Liu L; Patnana PK; Xie X; Frank D; Nimmagadda SC; Rosemann A; Liebmann M; Klotz L; Opalka B; Khandanpour C
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia.
    Baccelli I; Gareau Y; Lehnertz B; Gingras S; Spinella JF; Corneau S; Mayotte N; Girard S; Frechette M; Blouin-Chagnon V; Leveillé K; Boivin I; MacRae T; Krosl J; Thiollier C; Lavallée VP; Kanshin E; Bertomeu T; Coulombe-Huntington J; St-Denis C; Bordeleau ME; Boucher G; Roux PP; Lemieux S; Tyers M; Thibault P; Hébert J; Marinier A; Sauvageau G
    Cancer Cell; 2019 Jul; 36(1):84-99.e8. PubMed ID: 31287994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches.
    Thakral D; Gupta R; Khan A
    Stem Cell Rev Rep; 2022 Jun; 18(5):1756-1773. PubMed ID: 35412219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine.
    Buettner R; Nguyen LXT; Morales C; Chen MH; Wu X; Chen LS; Hoang DH; Hernandez Vargas S; Pullarkat V; Gandhi V; Marcucci G; Rosen ST
    J Hematol Oncol; 2021 Apr; 14(1):70. PubMed ID: 33902674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting Metabolic Dependencies Fueling the TCA Cycle to Circumvent Therapy Resistance in Acute Myeloid Leukemia.
    Boët E; Sarry JE
    Cancer Res; 2024 Apr; 84(7):950-952. PubMed ID: 38558131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells.
    Veuger MJ; Heemskerk MH; Honders MW; Willemze R; Barge RM
    Blood; 2002 Feb; 99(4):1373-80. PubMed ID: 11830489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML.
    Zhang Y; Jiang S; He F; Tian Y; Hu H; Gao L; Zhang L; Chen A; Hu Y; Fan L; Yang C; Zhou B; Liu D; Zhou Z; Su Y; Qin L; Wang Y; He H; Lu J; Xiao P; Hu S; Wang QF
    Genome Biol; 2023 Aug; 24(1):199. PubMed ID: 37653425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myeloid maturation potentiates STAT3-mediated atypical IFN-γ signaling and upregulation of PD-1 ligands in AML and MDS.
    Yoyen-Ermis D; Tunali G; Tavukcuoglu E; Horzum U; Ozkazanc D; Sutlu T; Buyukasik Y; Esendagli G
    Sci Rep; 2019 Aug; 9(1):11697. PubMed ID: 31406210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents.
    Yang H; Bueso-Ramos C; DiNardo C; Estecio MR; Davanlou M; Geng QR; Fang Z; Nguyen M; Pierce S; Wei Y; Parmar S; Cortes J; Kantarjian H; Garcia-Manero G
    Leukemia; 2014 Jun; 28(6):1280-8. PubMed ID: 24270737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways.
    Bakhtiyari M; Liaghat M; Aziziyan F; Shapourian H; Yahyazadeh S; Alipour M; Shahveh S; Maleki-Sheikhabadi F; Halimi H; Forghaniesfidvajani R; Zalpoor H; Nabi-Afjadi M; Pornour M
    Cell Commun Signal; 2023 Sep; 21(1):252. PubMed ID: 37735675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting Immune Signaling Checkpoints in Acute Myeloid Leukemia.
    Giannopoulos K
    J Clin Med; 2019 Feb; 8(2):. PubMed ID: 30759726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PTEN/AKT signaling mediates chemoresistance in refractory acute myeloid leukemia through enhanced glycolysis.
    Ryu MJ; Han J; Kim SJ; Lee MJ; Ju X; Lee YL; Son JH; Cui J; Jang Y; Chung W; Song IC; Kweon GR; Heo JY
    Oncol Rep; 2019 Nov; 42(5):2149-2158. PubMed ID: 31545464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.