BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 34298735)

  • 1. Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions.
    Bitar L; Schumann U; König R; Zipp F; Schmidt MHH
    Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview of immune checkpoint therapy in autoimmune diseases.
    Mohammadi P; Hesari M; Chalabi M; Salari F; Khademi F
    Int Immunopharmacol; 2022 Jun; 107():108647. PubMed ID: 35228033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review).
    Scutti JAB
    Int J Oncol; 2018 Apr; 52(4):1041-1056. PubMed ID: 29484440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme-Future Perspectives.
    Litak J; Grochowski C; Litak J; Osuchowska I; Gosik K; Radzikowska E; Kamieniak P; Rolinski J
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases.
    Huang C; Zhu HX; Yao Y; Bian ZH; Zheng YJ; Li L; Moutsopoulos HM; Gershwin ME; Lian ZX
    J Autoimmun; 2019 Nov; 104():102333. PubMed ID: 31564474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunosuppression in Gliomas
    Scheffel TB; Grave N; Vargas P; Diz FM; Rockenbach L; Morrone FB
    Front Oncol; 2020; 10():617385. PubMed ID: 33659213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Immunotherapies for Glioblastoma Multiforme.
    Huang B; Li X; Li Y; Zhang J; Zong Z; Zhang H
    Front Immunol; 2020; 11():603911. PubMed ID: 33767690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging immunotherapies for glioblastoma.
    Desai R; Suryadevara CM; Batich KA; Farber SH; Sanchez-Perez L; Sampson JH
    Expert Opin Emerg Drugs; 2016 Jun; 21(2):133-45. PubMed ID: 27223671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting FGL2 in glioma immunosuppression and malignant progression.
    Ma X; Zhu H; Cheng L; Chen X; Shu K; Zhang S
    Front Oncol; 2022; 12():1004700. PubMed ID: 36313679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis.
    Kumar P; Saini S; Prabhakar BS
    Semin Cancer Biol; 2020 Aug; 64():29-35. PubMed ID: 30716481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions.
    Maghrouni A; Givari M; Jalili-Nik M; Mollazadeh H; Bibak B; Sadeghi MM; Afshari AR; Johnston TP; Sahebkar A
    Int Immunopharmacol; 2021 Apr; 93():107403. PubMed ID: 33581502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment.
    Miyazaki T; Ishikawa E; Sugii N; Matsuda M
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32707672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced immunosuppression by therapy-exposed glioblastoma multiforme tumor cells.
    Authier A; Farrand KJ; Broadley KW; Ancelet LR; Hunn MK; Stone S; McConnell MJ; Hermans IF
    Int J Cancer; 2015 Jun; 136(11):2566-78. PubMed ID: 25363661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy.
    Kamran N; Kadiyala P; Saxena M; Candolfi M; Li Y; Moreno-Ayala MA; Raja N; Shah D; Lowenstein PR; Castro MG
    Mol Ther; 2017 Jan; 25(1):232-248. PubMed ID: 28129117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy.
    Long L; Zhang X; Chen F; Pan Q; Phiphatwatchara P; Zeng Y; Chen H
    Genes Cancer; 2018 May; 9(5-6):176-189. PubMed ID: 30603054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunotherapy for cancer in the central nervous system: Current and future directions.
    Binder DC; Davis AA; Wainwright DA
    Oncoimmunology; 2016 Feb; 5(2):e1082027. PubMed ID: 27057463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies?
    Hosseinkhani N; Derakhshani A; Kooshkaki O; Abdoli Shadbad M; Hajiasgharzadeh K; Baghbanzadeh A; Safarpour H; Mokhtarzadeh A; Brunetti O; Yue SC; Silvestris N; Baradaran B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells.
    Alissafi T; Hatzioannou A; Legaki AI; Varveri A; Verginis P
    J Autoimmun; 2019 Nov; 104():102310. PubMed ID: 31421963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune checkpoint therapy in liver cancer.
    Xu F; Jin T; Zhu Y; Dai C
    J Exp Clin Cancer Res; 2018 May; 37(1):110. PubMed ID: 29843754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.