BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34298944)

  • 1. Probing the Energetic Metabolism of Resting Cysts under Different Conditions from Molecular and Physiological Perspectives in the Harmful Algal Blooms-Forming Dinoflagellate
    Li F; Yang A; Hu Z; Lin S; Deng Y; Tang YZ
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Status of Energetic Metabolism of Dinoflagellate Resting Cysts under Mock Conditions of Marine Sediments via Physiological and Transcriptional Measurements.
    Li F; Yue C; Deng Y; Tang YZ
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression Patterns of the Heat Shock Protein 90 (Hsp90) Gene Suggest Its Possible Involvement in Maintaining the Dormancy of Dinoflagellate Resting Cysts.
    Deng Y; Li F; Hu Z; Yue C; Tang YZ
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome and metabolome analyses of cold and darkness-induced pellicle cysts of Scrippsiella trochoidea.
    Guo X; Wang Z; Liu L; Li Y
    BMC Genomics; 2021 Jul; 22(1):526. PubMed ID: 34246248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and Partial Characterization of a Cold Shock Domain-Containing Protein Gene from the Dinoflagellate Scrippsiella trochoidea.
    Deng Y; Hu Z; Chai Z; Tang YZ
    J Eukaryot Microbiol; 2019 May; 66(3):393-403. PubMed ID: 30099808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Analyses of
    Deng Y; Hu Z; Shang L; Peng Q; Tang YZ
    Front Microbiol; 2017; 8():2450. PubMed ID: 29312167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of nitrogen but not phosphorus triggers the life cycle transition of the dinoflagellate Scrippsiella acuminata from vegetative growth to resting cyst formation.
    Yue C; Chai Z; Hu Z; Shang L; Deng Y; Tang YZ
    Harmful Algae; 2022 Oct; 118():102312. PubMed ID: 36195426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional Responses of the Heat Shock Protein 20 (Hsp20) and 40 (Hsp40) Genes to Temperature Stress and Alteration of Life Cycle Stages in the Harmful Alga
    Deng Y; Hu Z; Shang L; Chai Z; Tang YZ
    Biology (Basel); 2020 Nov; 9(11):. PubMed ID: 33233461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for resting cyst production in the cosmopolitan toxic dinoflagellate Karlodinium veneficum and the cyst distribution in the China seas.
    Liu Y; Hu Z; Deng Y; Tang YZ
    Harmful Algae; 2020 Mar; 93():101788. PubMed ID: 32307071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of resting cysts (stages) and their relevance for possibly HABs-causing species in China.
    Tang YZ; Gu H; Wang Z; Liu D; Wang Y; Lu D; Hu Z; Deng Y; Shang L; Qi Y
    Harmful Algae; 2021 Jul; 107():102050. PubMed ID: 34456016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy metabolism and genetic information processing mark major transitions in the life history of Scrippsiella acuminata (Dinophyceae).
    Wu X; Li L; Lin S
    Harmful Algae; 2022 Jul; 116():102248. PubMed ID: 35710202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the Distribution of Cysts from the Toxic Dinoflagellate Cochlodinium polykrikoides in Bloom-Prone Estuaries by a Novel Fluorescence In Situ Hybridization Assay.
    Hattenrath-Lehmann TK; Zhen Y; Wallace RB; Tang YZ; Gobler CJ
    Appl Environ Microbiol; 2016 Feb; 82(4):1114-1125. PubMed ID: 26637596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined approach detected novel species diversity and distribution of dinoflagellate cysts in the Yellow Sea, China.
    Liu X; Liu Y; Chai Z; Hu Z; Tang YZ
    Mar Pollut Bull; 2023 Feb; 187():114567. PubMed ID: 36640495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the dinoflagellate cysts in ballast tank sediments of international vessels in Chinese shipyards.
    Lin L; Wang Q; Wu H
    Mar Environ Res; 2021 Jul; 169():105348. PubMed ID: 33991936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographic distribution and historical presence of the resting cysts of Karenia mikimotoi in the seas of China.
    Liu Y; Deng Y; Shang L; Yi L; Hu Z; Tang YZ
    Harmful Algae; 2021 Nov; 109():102121. PubMed ID: 34815021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Distribution of dinoflagellate resting cysts in surface sediments from the Changjiang River estuary].
    Wang Z; Qi Y
    Ying Yong Sheng Tai Xue Bao; 2003 Jul; 14(7):1039-43. PubMed ID: 14587318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for Production of Sexual Resting Cysts by the Toxic Dinoflagellate Karenia mikimotoi in Clonal Cultures and Marine Sediments.
    Liu Y; Hu Z; Deng Y; Tang YZ
    J Phycol; 2020 Feb; 56(1):121-134. PubMed ID: 31560797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small and patchy is enough: An example about how toxic HAB events can spread through low resting cyst loads.
    Rodríguez-Villegas C; Figueroa RI; Baldrich ÁM; Pérez-Santos I; Díaz M; Tomasetti SJ; Seguel M; Álvarez G; Salgado P; Díaz PA
    Harmful Algae; 2023 Nov; 129():102495. PubMed ID: 37951626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyst-forming dinoflagellates in a warming climate.
    Brosnahan ML; Fischer AD; Lopez CB; Moore SK; Anderson DM
    Harmful Algae; 2020 Jan; 91():101728. PubMed ID: 32057345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growing Degree-Day Measurement of Cyst Germination Rates in the Toxic Dinoflagellate Alexandrium catenella.
    Fischer AD; Brosnahan ML
    Appl Environ Microbiol; 2022 Jun; 88(12):e0251821. PubMed ID: 35604227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.