These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34299155)

  • 1. Variable Induction of Pro-Inflammatory Cytokines by Commercial SARS CoV-2 Spike Protein Reagents: Potential Impacts of LPS on In Vitro Modeling and Pathogenic Mechanisms In Vivo.
    Ouyang W; Xie T; Fang H; Gao C; Stantchev T; Clouse KA; Yuan K; Ju T; Frucht DM
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SARS-CoV-2/ACE2 Interaction Suppresses IRAK-M Expression and Promotes Pro-Inflammatory Cytokine Production in Macrophages.
    Pantazi I; Al-Qahtani AA; Alhamlan FS; Alothaid H; Matou-Nasri S; Sourvinos G; Vergadi E; Tsatsanis C
    Front Immunol; 2021; 12():683800. PubMed ID: 34248968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of Exaggerated Cytokine Production in Human Peripheral Blood Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by Dexamethasone.
    Olajide OA; Iwuanyanwu VU; Lepiarz-Raba I; Al-Hindawi AA
    Inflammation; 2021 Oct; 44(5):1865-1877. PubMed ID: 33860869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Inhibition of the Interaction between SARS-CoV-2 Spike S1 and ACE2 by SPIDAR Peptide Induces Anti-Inflammatory Therapeutic Responses.
    Paidi RK; Jana M; Mishra RK; Dutta D; Pahan K
    J Immunol; 2021 Nov; 207(10):2521-2533. PubMed ID: 34645689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Effect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial and Alveolar Lung Mucosa Models: Implications for Pathogenicity.
    Rahman M; Irmler M; Keshavan S; Introna M; Beckers J; Palmberg L; Johanson G; Ganguly K; Upadhyay S
    Viruses; 2021 Dec; 13(12):. PubMed ID: 34960806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoclonal antibodies capable of binding SARS-CoV-2 spike protein receptor-binding motif specifically prevent GM-CSF induction.
    Qiang X; Zhu S; Li J; Chen W; Yang H; Wang P; Tracey KJ; Wang H
    J Leukoc Biol; 2022 Jan; 111(1):261-267. PubMed ID: 33759207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosted Pro-Inflammatory Activity in Human PBMCs by Lipopolysaccharide and SARS-CoV-2 Spike Protein Is Regulated by α-1 Antitrypsin.
    Tumpara S; Gründing AR; Sivaraman K; Wrenger S; Olejnicka B; Welte T; Wurm MJ; Pino P; Kiseljak D; Wurm FM; Janciauskiene S
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of spike proteins on angiotensin converting enzyme 2 (ACE2).
    Bejoy J; Williams CI; Cole HJ; Manzoor S; Davoodi P; Battaile JI; Kaushik A; Nikolaienko SI; Brelidze TI; Gychka SG; Suzuki YJ
    Arch Biochem Biophys; 2023 Oct; 748():109769. PubMed ID: 37769892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SARS-CoV-2 Spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease.
    Avolio E; Carrabba M; Milligan R; Kavanagh Williamson M; Beltrami AP; Gupta K; Elvers KT; Gamez M; Foster RR; Gillespie K; Hamilton F; Arnold D; Berger I; Davidson AD; Hill D; Caputo M; Madeddu P
    Clin Sci (Lond); 2021 Dec; 135(24):2667-2689. PubMed ID: 34807265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions.
    Day CJ; Bailly B; Guillon P; Dirr L; Jen FE; Spillings BL; Mak J; von Itzstein M; Haselhorst T; Jennings MP
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier.
    Buzhdygan TP; DeOre BJ; Baldwin-Leclair A; Bullock TA; McGary HM; Khan JA; Razmpour R; Hale JF; Galie PA; Potula R; Andrews AM; Ramirez SH
    Neurobiol Dis; 2020 Dec; 146():105131. PubMed ID: 33053430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant ACE2 protein protects against acute lung injury induced by SARS-CoV-2 spike RBD protein.
    Zhang L; Zhang Y; Qin X; Jiang X; Zhang J; Mao L; Jiang Z; Jiang Y; Liu G; Qiu J; Chen C; Qiu F; Zou Z
    Crit Care; 2022 Jun; 26(1):171. PubMed ID: 35681221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation.
    Ferrer MD; Reynés C; Jiménez L; Malagraba G; Monserrat-Mesquida M; Bouzas C; Sureda A; Tur JA; Pons A
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of the severe acute respiratory syndrome coronavirus 2 spike protein with drug-inhibited angiotensin converting enzyme 2 studied by molecular dynamics simulation.
    Nami B; Ghanaeian A; Ghanaeian K; Houri R; Nami N; Ghasemi-Dizgah A; Caluseriu O
    J Hypertens; 2021 Aug; 39(8):1705-1716. PubMed ID: 34188005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Proinflammatory Molecules and Tissue Factor by SARS-CoV-2 Spike Protein in Human Placental Cells: Implications for SARS-CoV-2 Pathogenesis in Pregnant Women.
    Guo X; Semerci N; De Assis V; Kayisli UA; Schatz F; Steffensen TS; Guzeloglu-Kayisli O; Lockwood CJ
    Front Immunol; 2022; 13():876555. PubMed ID: 35464466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2.
    Jafary F; Jafari S; Ganjalikhany MR
    Sci Rep; 2021 Mar; 11(1):6927. PubMed ID: 33767306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target.
    Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S
    Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An angiotensin-converting enzyme-2-derived heptapeptide GK-7 for SARS-CoV-2 spike blockade.
    Han S; Zhao G; Wei Z; Chen Y; Zhao J; He Y; He YJ; Gao J; Chen S; Du C; Wang T; Sun W; Huang Y; Wang C; Wang J
    Peptides; 2021 Nov; 145():170638. PubMed ID: 34419496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin-(1-7) attenuates SARS-CoV2 spike protein-induced interleukin-6 and interleukin-8 production in alveolar epithelial cells through activation of Mas receptor.
    Shen YL; Hsieh YA; Hu PW; Lo PC; Hsiao YH; Ko HK; Lin FC; Huang CW; Su KC; Perng DW
    J Microbiol Immunol Infect; 2023 Dec; 56(6):1147-1157. PubMed ID: 37802686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Aβ
    Hsu JT; Tien CF; Yu GY; Shen S; Lee YH; Hsu PC; Wang Y; Chao PK; Tsay HJ; Shie FS
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.