These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 34299280)
1. Microbial Toxins in Insect and Nematode Pest Biocontrol. Chalivendra S Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299280 [TBL] [Abstract][Full Text] [Related]
2. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
3. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Heckel DG Arch Insect Biochem Physiol; 2020 Jun; 104(2):e21673. PubMed ID: 32212396 [TBL] [Abstract][Full Text] [Related]
4. Nematicidal Activity of Cry1Ea11 from Bacillus thuringiensis BRC-XQ12 Against the Pine Wood Nematode (Bursaphelenchus xylophilus). Huang T; Lin Q; Qian X; Zheng Y; Yao J; Wu H; Li M; Jin X; Pan X; Zhang L; Guan X Phytopathology; 2018 Jan; 108(1):44-51. PubMed ID: 28945518 [TBL] [Abstract][Full Text] [Related]
5. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. Karabörklü S; Azizoglu U; Azizoglu ZB World J Microbiol Biotechnol; 2017 Dec; 34(1):14. PubMed ID: 29255969 [TBL] [Abstract][Full Text] [Related]
6. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
7. Microbial biopesticides for insect pest management in India: Current status and future prospects. Kumar KK; Sridhar J; Murali-Baskaran RK; Senthil-Nathan S; Kaushal P; Dara SK; Arthurs S J Invertebr Pathol; 2019 Jul; 165():74-81. PubMed ID: 30347206 [TBL] [Abstract][Full Text] [Related]
8. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Kotze AC; O'Grady J; Gough JM; Pearson R; Bagnall NH; Kemp DH; Akhurst RJ Int J Parasitol; 2005 Aug; 35(9):1013-22. PubMed ID: 15964574 [TBL] [Abstract][Full Text] [Related]
9. Microbial biopesticides for invertebrate pests and their markets in the United States. Arthurs S; Dara SK J Invertebr Pathol; 2019 Jul; 165():13-21. PubMed ID: 29402394 [TBL] [Abstract][Full Text] [Related]
10. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Penha RO; Vandenberghe LPS; Faulds C; Soccol VT; Soccol CR Planta; 2020 Feb; 251(3):70. PubMed ID: 32086615 [TBL] [Abstract][Full Text] [Related]
11. Can Pyramids and Seed Mixtures Delay Resistance to Bt Crops? Carrière Y; Fabrick JA; Tabashnik BE Trends Biotechnol; 2016 Apr; 34(4):291-302. PubMed ID: 26774592 [TBL] [Abstract][Full Text] [Related]
12. Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis? Peralta C; Palma L Toxins (Basel); 2017 Jan; 9(1):. PubMed ID: 28106770 [TBL] [Abstract][Full Text] [Related]
13. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
14. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. Pardo-López L; Soberón M; Bravo A FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421 [TBL] [Abstract][Full Text] [Related]
15. Novel insecticidal toxins from nematode-symbiotic bacteria. ffrench-Constant RH; Bowen DJ Cell Mol Life Sci; 2000 May; 57(5):828-33. PubMed ID: 10892346 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Li J; Zou C; Xu J; Ji X; Niu X; Yang J; Huang X; Zhang KQ Annu Rev Phytopathol; 2015; 53():67-95. PubMed ID: 25938277 [TBL] [Abstract][Full Text] [Related]
17. Managing insecticide resistance by mass release of engineered insects. Alphey N; Coleman PG; Donnelly CA; Alphey L J Econ Entomol; 2007 Oct; 100(5):1642-9. PubMed ID: 17972643 [TBL] [Abstract][Full Text] [Related]
18. Comparative Genomics of Zheng J; Gao Q; Liu L; Liu H; Wang Y; Peng D; Ruan L; Raymond B; Sun M mBio; 2017 Aug; 8(4):. PubMed ID: 28790205 [TBL] [Abstract][Full Text] [Related]
19. Insect-resistant transgenic plants in a multi-trophic context. Groot AT; Dicke M Plant J; 2002 Aug; 31(4):387-406. PubMed ID: 12182699 [TBL] [Abstract][Full Text] [Related]
20. Identification of alternatives for the management of foliar nematodes in floriculture. Jagdale GB; Grewal PS Pest Manag Sci; 2002 May; 58(5):451-8. PubMed ID: 11997971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]